Integrated Math 3

12.1-12.2 Exponential Functions

Review Worksheet

Construct an exponential function from each Geometric Sequence.

1. $a_{n}=3(2)^{n-1}$
$3 \cdot 2^{n} \cdot 2^{-1}$
2. $a_{n}=5\left(\frac{1}{2}\right)^{n-1}$
$3 \cdot 2^{n} \cdot \frac{1}{2}$
$a_{n}=\frac{3}{2} \cdot 2^{n}$

3. $a_{n}=2(0.6)^{n-1}$
4. $a_{n}=1(10)^{n-1}$
$=2 \cdot 0.6^{1} \cdot 0.6^{-1}$
$2 \cdot 0.6^{n} \cdot \frac{5}{3}$
$a_{n}=\frac{16}{3} \cdot 0.6^{n}$

Complete the following exercises involving Half-Life.
5. If 10 mg of iodine 131 is given to a patient, how much is left after 24 days? The half-life of iodine-131 is 8 days.

$$
10 \cdot\left(\frac{1}{2}\right)^{\frac{24}{8}} 10 \cdot \frac{1}{8} \quad \frac{10}{8}=\frac{5}{4}=1.25 \mathrm{mg}
$$

6. Barium- 122 has a half-life of 2 minutes. A fresh sample weighing 80 g was obtained. If it takes 10 minutes to set up an experiment using barium-122, how much barium- 122 will be left when the experiment begins?

7. Mercury -197 is used for kidney scans and has a half-life of 3 days. If the amount of mercury-197 needed for a study is 1.0 gram and the time allowed for shipment is 15 days, how much mercury-197 will need to be ordered?

$$
\begin{aligned}
1=A \cdot\left(\frac{1}{2}\right)^{\frac{15}{3}} \quad 1 & =A \cdot \frac{1}{2}^{S} \\
32 \cdot 1 & =A \cdot \frac{1}{32} \cdot 32
\end{aligned}
$$

Graph the following exponential functions and complete the provided 3 point table.

$\frac{1}{2} x$
8. $f(x)=0.5^{x}$
9. $\mathrm{f}(\mathrm{x})=e^{\mathrm{x}}$

x	$f(x)$
-1	2
0	1
1	0,5

x	$f(x)$
-1	
0	1
1	2.71

Increasing or Decreasing: Decreasing
Over What Interval? $\quad(-\infty, \infty)$
Domain: $(-\infty, \infty)$
Range: \qquad
Increasing or Decreasing: Increasing
Over What Interval? $\quad(-\infty, \infty)$
Domain: $\frac{(-\infty, \infty)}{(0, \infty)}$
10. Which function above represented Exponential Growth? $f(x)=e^{x}$ Decay? $f(x)=0.5^{x}$
11. Write a function that would demonstrate Exponential Growth (Different from Above!). . bl
12. Write a function that would demonstrate Exponential Decay (Different from Above!). \qquad

Compound Interest

13. If you have a bank account whose principal $=\$ 1000$, and your bank compounds the interest twice a year at an interest rate of 5%, how much money do you have in your account at the year's end?

14. If you start a bank account with $\$ 10,000$ and your bank compounds the interest quarterly at an interest rate of 8%, how much money do you have at the year's end ?

$$
\begin{aligned}
A= & 10000\left(1+\frac{.08}{4}\right)^{4 \cdot 1} \\
& 10000(1.02)^{4}
\end{aligned}
$$

15. You win the lottery and get $\$ 1,000,000$. You decide that you want to invest all of the money in a savings account. However, your bank has two different plans. In 5 years from now, which plan will provide you with more money??

Plan 1
The bank gives you a 6% interest rate and compounds the interest each month.
Plan 2
The bank gives you a 12% interest rate and compounds the interest every 2 months.

$\frac{\text { Plan } 1}{1000000\left(1+\frac{.06}{12}\right)^{12.5}}$

$$
1000000(1.005)^{60}
$$

$$
31,348,850.15
$$

$$
\begin{aligned}
& \frac{P l a n}{(100000}\left(1+\frac{12}{6}\right)^{6.5} \\
& 1000600(1,02)^{30} \\
& 81,811,361,58
\end{aligned}
$$

Population Growth and Decay
16. In 2005, there were 85 rabbits in Central Park. The population is continuously growing at a rate of 12% each year. How many rabbits were in Central Park in 2015?

The formula for population growth is $N(t)=N_{0} e^{4}$. Complete the table to identify the contextual meaning of each quantity.

Quantity	Contextual Meaning
N_{0}	initial amount of population
r	rate of growth
t	time
$N(t)$	population after t years

17. In 2015, the population in Lockport was 56,000 . It is projected that the population will grow continuously at a rate of 1.9% each year. What is the anticipated population for Lockport in the year 2020?

18. Using your population model from the above example, what was the population of Lockport in 1995? (Assume the population grew at the same 1.9% rate from 1995 to 2015).

$$
\begin{aligned}
& 56000 e^{.019 \cdot-20} \\
& 56000 e^{-.38}
\end{aligned}
$$

