Name: \qquad Exponential Growth \& Decay Functions

Date: \qquad Period: \qquad
\#1-2: Rewrite the geometric rule as an exponential function, $f(x)$.
1.) $a_{n}=3 \cdot(1.5)^{n-1}$
2.) $a_{n}=0.5 \cdot(4)^{n-1}$

$$
\begin{aligned}
& f(x)=3 \cdot 1.5^{x} \cdot 1.5^{-1} \\
& f(x)=3 \cdot \frac{1}{1.5} \cdot 1.5^{x}
\end{aligned}
$$

 $f(x)=0.5$.

$$
f(x)=3 \cdot \frac{1}{1.5} \cdot 1 \cdot 5^{x} \quad f(x)=2 \cdot 1.5^{x}
$$

\#3-7: Determine whether each function represents exponential growth or decay. Explain your reasoning.
3.) $f(x)=7 \cdot\left(\frac{1}{4}\right)^{-x}$ \qquad Reasoning: $\quad 1=4, \quad b>1$
4.) $f(x)=0.7 \cdot(5)^{x}$

Growth
6.) $f(x)=3.9^{x}$
7.) $f(x)=3 \cdot\left(\square_{9}^{x}\right.$
5.) $f(x)=\frac{1}{2} \cdot\left(\frac{4}{3}\right)^{-x}$

Reasoning: __
Complete this if you lost any points on \#1-5
.
$b=5 \quad b>1$

R
Reasoning: $b=3 / 4 \quad 0<b<$
Reasoning: $b=3.9 \quad b>1$
reasoning: $b=3 / 4 \quad 0<b<1$
$b=\frac{1}{9} \quad 0<b<1$

Name: \qquad

Exponential Growth \& Decay Functions

Date: \qquad Period: \qquad

Complete this if you lost any points on \#1-5

\#1-2: Rewrite the geometric rule as an exponential function, $f(x)$.
1.) $a_{n}=3 \cdot(1.5)^{n-1}$
2.) $a_{n}=0.5 \cdot(4)^{n-1}$
\#3-7: Determine whether each function represents exponential growth or decay. Explain your reasoning.
3.) $f(x)=7 \cdot\left(\frac{1}{4}\right)^{-x}$
4.) $f(x)=0.7 \cdot(5)^{x}$
\qquad Reasoning: \qquad
.) $f(x)=0.7 \cdot(5)^{x}$
\qquad Reasoning: \qquad
5.) $f(x)=\frac{1}{2} \cdot\left(\frac{4}{3}\right)^{-x}$
6.) $f(x)=3.9^{x}$
\qquad Reasoning: \qquad
\qquad Reasoning: \qquad
7.) $f(x)=3 \cdot\left(\frac{9}{7}\right)^{x}$ \qquad Reasoning: \qquad

Name: \qquad
Date: \qquad Period: \qquad

Half-Life Problems

Write the formula used here: $A(t)=A_{0}\left(\frac{1}{2}\right)^{n}$

Explain what each variable represents in the half-life formula.

 Amount after InitialA: t (time) A0: Amount
t: fine
n: half life

1. Hg -197 is used in kidney scans. It has a half-life of 64.128 hours.
a. Write the exponential function for a $12-\mathrm{mg}$ sample.

$$
A(t)=12\left(\frac{1}{2}\right)^{t / 64.128}
$$

b. Find the amount remaining after 72 hours.

$$
A(72)=12\left(\frac{1}{2}\right)^{72164.128} \approx 5.51 \mathrm{mg}
$$

2. Barium- 122 has a half-life of 3 minutes. A fresh sample weighing 90 g was obtained. If it takes 10 minutes to set up an experiment using barium-122, how much barium- 122 will be left when the experiment begins?

$$
A(10)=90\left(\frac{1}{2}\right)^{10 / 3} \approx 8.93 \mathrm{mg}
$$

Name: \qquad
Date: \qquad Period: \qquad

Half-Life Problems

Complete this if you lost any points on \#6

Write the formula used here:

\qquad

Explain what each variable represents in the half-life formula.

A:
A_{0} :
t :
h:

1. Hg -197 is used in kidney scans. It has a half-life of 64.128 hours.
a. Write the exponential function for a $12-\mathrm{mg}$ sample.
b. Find the amount remaining after 72 hours.
2. Barium -122 has a half-life of 3 minutes. A fresh sample weighing 90 g was obtained. If it takes 10 minutes to set up an experiment using barium -122, how much barium- 122 will be left when the experiment begins?

Date: \qquad Period:
Write the formula used here: \qquad Complete this if you lost any points on \#7

Explain what each variable represents in the compound interest formula.

A: Amount
P: Principal
r: rate
number of
n : tomes
compounded
t: time

1. If you have a bank account whose principal = $\$ 500$, and your bank compounds the interest monthly at an interest rate of 1.3%, how much money do you have in your account at the year's end?

2. If you start a bank account with $\$ 5,500$ and your bank compounds the interest quarterly at an interest rate of 6%, how much money do you have at the year's end?

Name: \qquad

Compound Interest Problems

Date: \qquad Period: \qquad Complete this if you lost any points on \#7

Write the formula used here:

\qquad
Explain what each variable represents in the compound interest formula.
A:
P:
r :
n :
t :

1. If you have a bank account whose principal = $\$ 500$, and your bank compounds the interest monthly at an interest rate of 1.3%, how much money do you have in your account at the year's end?
2. If you start a bank account with $\$ 5,500$ and your bank compounds the interest quarterly at an interest rate of 5%, how much money do you have at the year's end?

Name: \qquad Population Growth Problems

Date: \qquad Period: \qquad it
Write the formula used here: $A(t)=A_{0}{ }^{\circ} l$

Explain what each variable represents in the population growth formula.

1. In 2016, the population in Lockport was 39,000. It is projected that the population will grow continuously at a rate of 2.3% each year. What is the anticipated population for Lockport in the year 2025?

$$
A(9)=39,000 \cdot e^{.023 \cdot 9} \approx 47,969
$$

2. Using your population mode from the above example, what was the population of Lock
population grew at the same 4.36 rate from 1980 to 2016).

$$
A(.36)=39,000 \cdot 0.026
$$

Name: \qquad

Population Growth Problems

Date: \qquad Period: \qquad Complete this if you lost any points on \#9
Write the formula used here: \qquad

Explain what each variable represents in the population growth formula.

$A(t):$
$A_{0}:$
$r:$
t :

1. In 2016, the population in Lockport was 39,000. It is projected that the population will grow continuously at a rate of 2.3% each year. What is the anticipated population for Lockport in the year 2025?
2. Using your population model from the above example, what was the population of Lockport in 1980? (Assume the population grew at the same 1.9% rate from 1980 to 2016).

Name: ley
Date: \qquad Period: \qquad

Complete this if you lost any points on \#10 or 11
Graph each exponential function \& its asymptote. Identify ALL characteristics using proper notation.
1.) $f(x)=\left(\frac{1}{2}\right)^{x-2}-1$

x	-1	0	1	2	3
$f(x)$	7	3	1	0	-.5

Describe ALL transformations on the parent function: And down I Domain: (∞, ∞) Range: $(-1, \infty)$
Asymptote: $y=-1$ Intercept: $(0,3)$ Interval of Increase or Decrease (Cir \qquad
End Behavior (using limits): $\lim f(x)=-1$

$$
\lim _{x \rightarrow-\infty} f(x)=\infty
$$

2.) $f(x)=-2\left(\frac{2}{3}\right)^{-x}$

x	-3	-2	-1	0	1
$f(x)$	-.6	-.8	-1.3	-2	-3

reflect over x-axis Verkfal Stretch by
Describe ALL transformations on the parent function: A factor of 2
Domain: $(-\infty, \infty) \quad$ Range: $(-\infty, 0)$
Asymptote: $y=0$ Intercept: $(0,-1)$
Interval of Increase or decrease
(Circle One): $(-\infty, \infty)$
End Behavior (using limits):

$$
\lim _{x \rightarrow \infty}^{x \rightarrow \infty}(x)=-\infty
$$

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

Name: \qquad
Date: \qquad Period: \qquad

Write an equation for an exponential function having the given characteristics.
1.) decreasing over $(-\infty, \infty)$
reference point $(-2,9)$

$$
\begin{aligned}
& 9=b^{-2} \\
& \frac{1}{9}=b^{2}
\end{aligned}
$$

$$
b=\frac{1}{3}
$$

2.) end behavior: $\begin{aligned} & \text { as } x \rightarrow-\infty, f(x) \rightarrow \varnothing \\ & \text { as } x \rightarrow \infty, f(x) \rightarrow \infty\end{aligned}$
reference point $\left(-3, \frac{8}{27}\right)$

Name: \qquad
Date: \qquad Period: \qquad

Writing Equations of Exponential Functions
Complete this if you lost any points on \#8

Write an equation for an exponential function having the given characteristics.
1.) decreasing over $(-\infty, \infty)$
reference point $(-2,9)$
2.) end behavior: $\begin{aligned} & \text { as } x \rightarrow-\infty, f(x) \rightarrow \infty \\ & \text { as } x \rightarrow \infty, f(x) \rightarrow 0\end{aligned}$ reference point $\left(-3, \frac{8}{27}\right)$

