Name: **Exponential Growth & Decay Functions** Date: Period: Complete this if you lost any points on #1-5 #1-2: Rewrite the geometric rule as an exponential function, f(x). 1.) $a_n = 3 \cdot (1.5)^{n-1}$ 2.) $a_n = 0.5 \cdot (4)$ $f(x) = 3 \cdot 1.5$ #3-7: Determine whether each function represents exponential growth or decay. Explain your reasoning. 3.) $f(x) = 7 \cdot \left(\frac{1}{4}\right)^{-x}$ Reasoning: 4.) $f(x) = 0.7 \cdot (5)^x$ Reasoning: 5.) $f(x) = \frac{1}{2} \cdot \left(\frac{4}{3}\right)^{-x}$ Reasoning: 6.) $f(x) = 3.9^x$ Reasoning: 7.) $f(x) = 3 \cdot \left(\oint_{x}^{x} \right)^{x}$ Reasoning: **Exponential Growth & Decay Functions** Name: _____

Complete this if you lost any points on #1-5

Date: ______ Period: ______

#1-2: Rewrite the geometric rule as an exponential function, f(x).

1.) $a_n = 3 \cdot (1.5)^{n-1}$ 2.) $a_n = 0.5 \cdot (4)^{n-1}$

#3-7: Determine whether each function represents exponential growth or decay. Explain your reasoning.

$3.) f(x) = 7 \cdot \left(\frac{1}{4}\right)^{-x}$	 Reasoning:
4.) $f(x) = 0.7 \cdot (5)^x$	 Reasoning:
5.) $f(x) = \frac{1}{2} \cdot \left(\frac{4}{3}\right)^{-x}$	 Reasoning:
6.) $f(x) = 3.9^x$	 Reasoning:
7.) $f(x) = 3 \cdot \left(\frac{9}{7}\right)^x$	 Reasoning:

Name: Ky	Half-Life Problems			
Date: Period:	Complete this if you lost any points on #6			
Write the formula used here: $A(t) = A_0$	<u>ā)</u>			
Explain what each variable represents in the ha				
A: t (time) A: Amant t: tin	he his half life			
1. Hg-197 is used in kidney scans. It has a half-life o	f 64.128 hours.			
a. Write the exponential function for a 12-m $A(t) = 12 \left(\frac{1}{2}\right)^{1/64.128}$	ng sample.			
b. Find the amount remaining after 72 hour	S.			
$A(72) = 12(\frac{1}{2})^{72/64.128} \times 5.51 \text{ mg}$				
2. Barium-122 has a half-life of 3 minutes. A fresh sample weighing 90 g was obtained. If it takes 10 minutes to set up an experiment using barium-122, how much barium-122 will be left when the experiment begins? $f_{1}(1) = f_{1}\left(\frac{1}{2}\right)^{10/3} \lesssim 8.93 \text{ mg}$				
Name:	Half-Life Problems			
Date: Period:	Complete this if you lost any points on #6			
Write the formula used here:				
Explain what each variable represents in the half-life formula.				
A: A ₀ : t:	h:			
 Hg-197 is used in kidney scans. It has a half-life o a. Write the exponential function for a 12-m 				

b. Find the amount remaining after 72 hours.

2. Barium-122 has a half-life of 3 minutes. A fresh sample weighing 90 g was obtained. If it takes 10 minutes to set up an experiment using barium-122, how much barium-122 will be left when the experiment begins?

Name:			Compou	nd Interest Problems
Date: Write the for	Period: mula used here:A =	$\frac{\gamma(1+\gamma)^{n\cdot t}}{\gamma(1+\gamma)}$	Complete	e this if you lost any points on #7
Explain what	each variable represei	nts in the compound	interest form	ila.
A: Amount	P: Principal	r: rate	n: hmc	r of s t: time ounded
-	-		ur bank compo	unds the interest monthly at an
interest rate o	f 1.3%, how much mone A = 500	(+ -013 la)		/ear's end?
-	uch money do you have	-		erest quarterly at an interest rate
Name:			Compou	nd Interest Problems
Date:	Period:		Complete	e this if you lost any points on #7
Write the for	mula used here:			
Explain what	each variable represei	nts in the compound	interest formı	ıla.
A:	Ρ:	r:	n:	t:
•	a bank account whose p f 1.3%, how much mone	• • •	•	unds the interest monthly at an /ear's end?

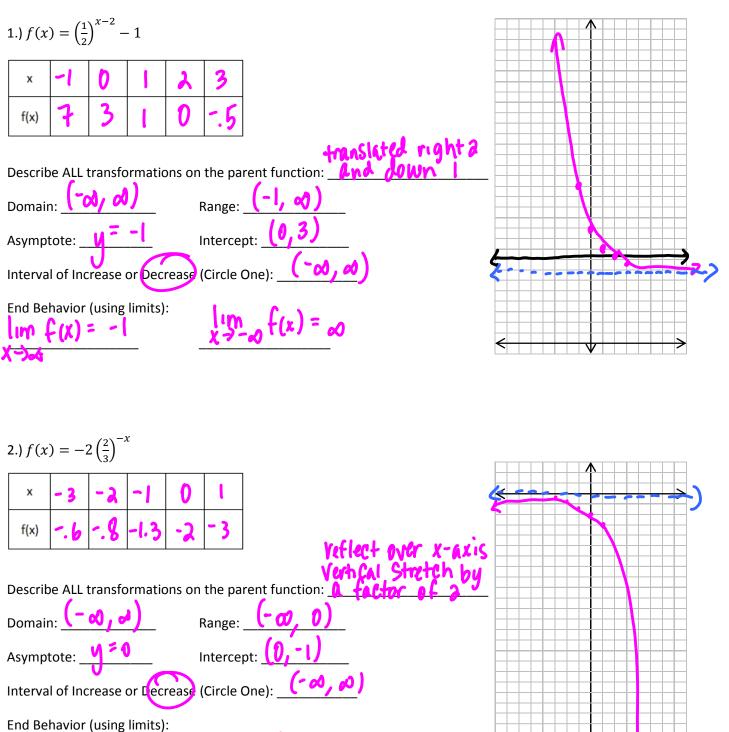
2. If you start a bank account with \$5,500 and your bank compounds the interest quarterly at an interest rate of 5%, how much money do you have at the year's end?

Name: 44		Population Growth Problems
Date:	Period: nula used here: A(t) = A	Complete this if you lost any points on #9
Write the form	nula used here: <mark>A(t) = P</mark>	<u>o' e</u>
Explain what	each variable represents in	the population growth formula.
A(t): t time	After Initial Ao: Appulation	frouch time
1. In 2016, the p	opulation in Lockport was 39,000). It is projected that the population will grow continuously at a rate of
2.3% each year.		on for Lockport in the year 2025?
	A(9) = 39,000.	e ≈ (47,969)
	J.3°lo	
2. Using your po	pulation mode, from the above e	example, what was the population of Lockport in 1980? (Assume the
population grew	at the same $\frac{100}{100}$ rate from 1980 A(-36) = 39,000	$0 \cdot 0^{10} \approx (17,040)$
Name:		Population Growth Problems
Date:	Period:	Complete this if you lost any points on #9
Write the form	nula used here:	
Explain what (each variable represents in t	the population growth formula.
A(t):	A ₀ : r	: t:

1. In 2016, the population in Lockport was 39,000. It is projected that the population will grow continuously at a rate of 2.3% each year. What is the anticipated population for Lockport in the year 2025?

2. Using your population model from the above example, what was the population of Lockport in 1980? (Assume the population grew at the same 1.9% rate from 1980 to 2016).

 $\lim_{x \to \infty} f(x) = -\infty$


Graphing Exponential Functions

Date:

_____ Period: _____

Complete this if you lost any points on #10 or 11

Graph each exponential function & its asymptote. Identify ALL characteristics using proper notation.

 $\frac{\lim f(x)=0}{2}$

Name:		Writing Equa	tions of Exponential Functions
J Date: Period	:	Complete this	if you lost any points on #8
Write an equation for an exponent	ial function having the	e given character	istics.
1.) decreasing over ($-\infty,\infty$)			
reference point (-2, 9)	9= b ⁻²		$\left(f(x)=\left(\frac{1}{3}\right)^{x}\right)$
	$\frac{1}{q} = b^{2}$	b= 1 3	

Write an equation for an exponential function having the given characteristics.

1.) decreasing over $(-\infty, \infty)$

reference point (-2, 9)

2.) end behavior: $\operatorname{as} x \to -\infty, f(x) \to \infty$ as $x \to \infty, f(x) \to 0$ reference point (-3, $\frac{8}{27}$)