Name \qquad Period \qquad

12.1 Small Investment, Big Reward Exponential Functions

Vocabulary

Define each term in your own words.

1. exponential function
2. half-life

The amount of time it takes a substance to decay to half of its original amount.

Problem Set

Write the explicit formula for each geometric sequence. Then, use the equation to determine the $10^{\text {th }}$ term.
Round answers to the nearest thousandth, if necessary.
3.

1	2	3	4	5	6	10
5	15	45	135	405	1,215	98,415

4.
5.

1	2	3	4	5	6	10
200	100	50	25	12.6	6.25	0.391

1	2	3	4	5	6	10
1	1.25	1.563	1.953	2.441	3.052	7.451

$$
a_{n}=1 \cdot 1.25^{n-1}
$$

$$
a_{10}=1 \cdot 1.25^{10-1}
$$

$$
=1 \cdot 1.25^{9}
$$

$$
\approx 7.451
$$

$$
a_{n}=1 \cdot 0.8^{n-1}
$$

1	2	3	4	5	6	10
1	0.8	0.64	0.512	0.410	0.328	0.134

$$
\begin{aligned}
a_{n} & =200 \cdot(0.5)^{n-1} \\
a_{10} & =200(0.5)^{10-1} \\
& =200(0.5)^{9} \\
& \approx 200(0.001953) \\
& \approx 0.391
\end{aligned}
$$

$$
a_{10}=1 \cdot 0.8^{10-1}
$$

$$
=1 \cdot 0.8^{9}
$$

$$
a_{n}=0.4 \cdot 2^{n-1}
$$

$$
\approx 0.134
$$

$$
a_{10}=0.4 \cdot 2^{10-1}
$$

$$
=0.4 \cdot 2^{9}
$$

$$
=0.4 \cdot 512
$$

$$
=204.8
$$

$$
\begin{aligned}
a_{n} & =27 \cdot\left(\frac{1}{3}\right)^{n-1} \\
a_{10} & =27\left(\frac{1}{3}\right)^{10-1} \\
& =27\left(\frac{1}{3}\right)^{9} \\
& \approx 27(0.00005) \\
& \approx 0.0014 \\
& =\frac{1}{729}
\end{aligned}
$$

Write an exponential function to represent each geometric sequence.
Evaluate the function for the given value of \boldsymbol{n}. Round to the nearest thousandth, if necessary.

12. $a_{n}=0.05 \cdot 1.25^{n-1} f(n)=.05(1.25)^{n-1}$ $n=24$

$$
=.05(1.25)^{n} \cdot(1.25)^{t}
$$

$$
=.05(1.25)^{n}(.8)
$$

$$
f(n)=.04(1.25)^{n}
$$

$$
f(24)=.04(6.25)^{24}
$$

13. $a_{n}=10 \cdot 4^{n-1}$

$n=7$
$f(n)=10 \cdot 4^{n-1}$
$=10 \cdot 4^{n} \cdot 4^{-1}$
$=10 \cdot 4^{n} \cdot \frac{1}{4}$
$f(n)=2.5 \cdot 4^{n}$
$f(7)=2.5 \cdot 4^{7}$
$=2.5 \cdot 16,384$
$=40,960$
14. $a_{n}=150 \cdot 0.8^{n-1}$

$$
\begin{aligned}
f(n) & =150 \cdot 0.8^{n-1} \\
& =150 \cdot 0.8^{n} \cdot 0.8^{-1} \\
& =150 \cdot 0.8^{n} \cdot \frac{10}{8} \\
f(n) & =187.5 \cdot 0.8^{n} \\
f(2) & =187.5 \cdot 0.8^{2} \\
& =187.5 \cdot 0.64 \\
& =120
\end{aligned}
$$

$$
\begin{aligned}
f(n) & =1000(.5)^{n-1} \\
& =1000(.5)^{n} \cdot(.5)^{1} \\
& =1000(.5)^{1} \cdot 2 \\
f(n) & =2000(.5)^{n} \\
f(5) & =2000(.5)^{1}=62.5
\end{aligned}
$$

Write an exponential function $A(t)$, where t represents elapsed time, to represent each half-life situation.
Then, use the function to complete each table. Round as necessary.
15.

Elapsed Time (hours)	0	2	4	6	8	20
Drug in Bloodstream (mg)	120	60	30	15	7.5	0.1172
Number of Half-Life Cycles	0	1	2	3	4	10

$A(t)=120\left(\frac{1}{2}\right)^{\frac{1}{2}}$
$A(20)=120\left(\frac{1}{2}\right)^{\frac{20}{2}}$
$=120\left(\frac{1}{2}\right)^{10}$
$=120(0.00098)$
$=0.1172$
16.

Elapsed Time (minutes)	0	5	10	15	20	100
Bacteria Subject to Growth Inhibitor	800	400	200	100	50	0.000763
Number of Half-Life Cycles	0	1	2	3	4	20

$$
\begin{aligned}
A(t) & =800\left(\frac{1}{2}\right)^{\frac{t}{6}} \\
A(100) & =800\left(\frac{1}{2}\right)^{\frac{100}{5}} \\
& =800\left(\frac{1}{2}\right)^{20} \quad \approx 800(0.00000095) \approx 0.000763
\end{aligned}
$$

