12.2 We Have Liftoff!-----Properties of Exponential Graphs
 Vocabulary

1. Explain how the natural base e is similar to and different from π.

Both are symbols that represent irrational numbers and are constants that are used to simplify calculations. The natural base e represents continuous growth and is used to model population changes, radioactive decay of a substance, and other physics and calculus applications. It is approximately equal to 2.71828 . The number π represents the ratio of a circle's circumference to its diameter and is used in many geometry formulas for area and volume of geometric shapes. It is
Problem Set approximately equal to 3.14159 .
Identify each function as exponential "growth" or "decay." Explain your reasoning.
2. $f(x)=8^{x}$

The function represents exponential growth because the base is greater than 1.
3. $f(x)=0.2^{x}$

The function represents exponential decay because the base is between 0 and 1 .
4. $f(x)=\left(\frac{5}{2}\right)^{x} \quad \begin{array}{ll}\text { The function represents exponential } \\ \text { growth because the base is greater than } 1 .\end{array}$
5. $f(x)=25^{x}$

The function represents exponential growth because the base is greater than 1.
6. $f(x)=\left(\frac{1}{6}\right)^{x} \quad \begin{array}{ll}\text { The function represents exponential decay } \\ \text { because the base is between } 0 \text { and } 1 .\end{array}$
7. $f(x)=7.5^{x}$

The function represents exponential growth because the base is greater than 1 .

Complete each table and graph the exponential function.

$$
\text { 8. } f(x)=2^{x}
$$

10. $f(x)=\left(\frac{5}{4}\right)^{x}$

x	$f(x)$
-1	$\frac{4}{5}$
0	1
1	$\frac{5}{4}$

9. $f(x)=\left(\frac{1}{2}\right)^{x}$

x	$f(x)$
-1	2
0	1
1	$\frac{1}{2}$

11. $f(x)=0.3^{x}$

x	$f(x)$
-1	$\frac{10}{3}$
0	1
1	$\frac{3}{10}$

Write an exponential function with the given characteristics.
12. increasing over $(-\infty, \infty)$

Answers will vary.
reference point $\left(-1, \frac{1}{9}\right) \quad f(x)=9^{x}$
14. increasing over $(-\infty, \infty)$

Answers will vary.

reference point $\left(-3, \frac{1}{8}\right) \quad f(x)=2^{x}$
13. decreasing over $(-\infty, \infty)$ Answers will vary.
reference point $\left(1, \frac{2}{3}\right)$
$f(x)=\left(\frac{2}{3}\right)^{x}$
15. End behavior $\lim _{x \rightarrow-\infty} f(x)=\infty$
and
$\lim _{x \rightarrow \infty} f(x)=0$
reference point $\left(-4, \frac{81}{16}\right)$

Answers will vary.
$f(x)=\left(\frac{2}{3}\right)^{x}$

Use the formula for compound interest to determine the amount of money in each account after interest is accrued.

$$
I(t)=P\left(1+\frac{r}{n}\right)^{r t}
$$

16. An investor deposits $\$ 1,000$ in an account that promises 5% interest calculated at the end of each year. How much will be in the account after seven years?

$$
\text { There will be } \$ 1,407.10 \text { in the account after seven years. }
$$

$$
\begin{aligned}
A(t) & =P\left(1+\frac{r}{n}\right)^{n \cdot t} \\
A(7) & =1,000\left(1+\frac{0.05}{1}\right)^{1.7} \\
& =1,000(1.05)^{7} \\
& \approx 1,407.10
\end{aligned}
$$

17. At the start of the school year, Fairview High School deposits PTA dues in an account that offers 3.5% compound interest at the end of a year. If $\$ 2500$ is collected in PTA dues, how much money will the school have at the start of the next school year?

18. Kyle put $\$ 300$ of his birthday money in the bank. The bank compounds interest twice a year at 4%. How much money will Kyle have after three years?

19. An investing group has $\$ 50,000$ to invest. They put the money in an account that compounds interest monthly at a rate 6%. How much money will the group have at the end of 10 years?

20. Interest is compounded quarterly at Money Bank at a rate of 5.5%. A new client opens an account with $\$ 7200$. How much money will be in the account at the end of six years?

