Date \qquad Period \qquad

12.3 Skills Practice: I Like to Move It

Transformations of Exponential Functions

Problem Set

Complete the table to determine the corresponding points on $c(x)$, given reference points on $f(x)$. Then, graph $c(x)$ on the same coordinate plane as $f(x)$ and state the domain, range, and asymptotes of $c(x)$, write the function for the transformed $c(x)$ and state the end behavior using limit notation.

$$
\text { 1. } \begin{aligned}
f(x) & =2^{x} \\
c(x) & =f(x-1)
\end{aligned}
$$

Reference Points on $f(x)$	Corresponding Points on $\boldsymbol{c}(\boldsymbol{x})$
$\left(-1, \frac{1}{2}\right)$	$\left(0, \frac{1}{2}\right)$
$(0,1)$	$(1,1)$
$(1,2)$	$(2,2)$

Domain: All Real Numbers; ($-\infty, \infty$)
Range: All real numbers greater than $0 ; y>0$
Horizontal asymptote: $y=0$
Transformed function: $c(x)=2^{x-1}$
End Behavior:
$\lim _{x \rightarrow \infty} c(x)=\infty \quad \lim _{x \rightarrow-\infty} c(x)=0$
Intercepts: $(0,1)$
2. $f(x)=4^{x}$
$c(x)=f(x)-2$

Reference Points on $\boldsymbol{f}(\boldsymbol{x})$	Corresponding Points on $\boldsymbol{c}(\boldsymbol{x})$
$\left(-1, \frac{1}{4}\right)$	$\left(-1,-\frac{7}{4}\right)$
$(0,1)$	$(0,-1)$
$(1,4)$	$(1,2)$

Domain: All real numbers; $(-\infty, \infty)$
Range: $y>-2 \quad(-2,0)$
Horizontal asymptote: $y=-2$
Transformed function: $C(x)=4^{x}-2$
End Behavior: $\lim _{x \rightarrow \infty} c(x)=\infty \quad \lim c(x)=-2$
Intercepts: $(0,-1) \quad x \rightarrow \infty$

Complete the table to determine the corresponding points on $c(x)$, given reference points on $f(x)$. Then, graph $c(x)$ on the same coordinate plane as $f(x)$ and state the domain, range, and asymptotes of $c(x)$, write the function for the transformed $c(x)$ and state the end behavior using limit notation.
3. $f(x)=3^{x}$ and $c(x)=f(-x)$

Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Horizontal asymptote: $\quad \bigvee=0$
Transformed function:

4. $f(x)=2^{x}$

$c(x)=4 f(x)$	(x, fy)
Reference Points on $f(x)$	Corresponding Points on $c(x)$
$\left(-1, \frac{1}{2}\right)$	$(-1,2)$
$(0,1)$	$(0,4)$
$(1,2)$	$(1,8)$

Domain: All real numbers $;(\sim \infty, \infty)$

$$
\text { Range: } y>0 \quad i \quad(0, \infty)
$$

Horizontal asymptote: $y=0$
Transformed function: $c(x)=4,2^{x}$
End Behavior: $\lim _{x \rightarrow \infty} c(x)=\infty \quad \lim _{x \rightarrow-\infty} c(x)=0$
Intercepts:
$x \rightarrow-\infty$
$(0,4)$

Complete the table to determine the corresponding points on $c(x)$, given reference points on $f(x)$. Then, graph $c(x)$ on the same coordinate plane as $f(x)$ and state the domain, range, and asymptotes of $c(x)$, write the function for the transformed $c(x)$ and state the end behavior using limit notation.
5. $f(x)=5^{x}$

$c(x)=f(x+3)$	$(x-3, y)$
Reference Points on $f(x)$	Corresponding Points on $c(x)$
$\left(-1, \frac{1}{5}\right)$	$\left(-4, \frac{1}{5}\right)$
$(0,1)$	$(-3,1)$
$(1,5)$	$(-2,5)$

6. $f(x)=4^{x}$
$c(x)=f(x)+2$
$(x, y+24)$

Reference Points on $f(x)$	Corresponding Points on $c(x)$
$\left(-1, \frac{1}{4}\right)$	$\left(-1,2 \frac{1}{4}\right)$
$(0,1)$	$(0,3)$
$(1,4)$	$(1,6)$

Domain: All real numbers or $(-\infty, \infty)$
Range: $y>0 \quad(0, \infty)$
Horizontal asymptote: $y=0$
Transformed function: $C(x)=5^{x+3}$
End Behavior: $\lim _{x \rightarrow \infty} c(x)=\infty \quad \lim _{x \rightarrow-\infty} c(x)=0$ Intercepts:
none

Domain: All real numbers $(-\infty, \infty)$
Range: $y>2 \quad(2,00)$
Horizontal asymptote: $y=2$
Transformed function: $C(x)=4^{x}+2$
End Behavior: $\lim _{x \rightarrow \infty} c(x)=\infty \quad \lim _{x \rightarrow-\infty} c(x)=2$

Describe the transformations performed on $f(x)$ to create $g(x)$. Then, write an equation for $g(x)$ in terms of $f(x)$.
7.
$f(x)=5^{x}$

Description of transformation: To create $g(x)$, the graph of $f(x)$ was reflected over the x-axis and vertically translated up 3 units.
$g(x)=-f(x)+3$
Transformed function: $\quad g(x)=-1 \cdot 5^{x}+3$
8. $\quad f(x)=3^{x}$

To create $g(x)$, the graph of $f(x)$ was horizontally translated left 1 unit and vertically translated down 4 units.
Description of transformation:

$$
g(x)=f(x+1)-4
$$

Transformed function:

Describe the transformations performed on $f(x)$ to create $g(x)$. Then, write an equation for $g(x)$ in terms of $f(x)$.
9.

Description of transformation:
To create $g(x)$, the graph of $f(x)$ was reflected over the y-axis and vertically translated up 5 units.
$g(x)=f(-x)+5$
Transformed function:

Describe the transformations performed on $m(x)$ that produced $t(x)$. Then, write an exponential equation for $t(x)$.
10. $m(x)=3^{x}$

$$
t(x)=-m(x+1)
$$

The graph of the function $m(x)$ is reflected over the x-axis and horizontally translated left 1 unit to produce $t(x)$.

$$
t(x)=-3^{x+1}
$$

13. $m(x)=4^{x}$
$t(x)=m(3 x-1)$

The graph of the function $m(x)$ is compressed horizontally by a factor of $\frac{1}{3}$ and horizontally translated right $\frac{1}{3}$ units to produce $t(x)$.

$$
t(x)=4^{3 x-1} \text { or } t(x)=4^{3\left(x-\frac{1}{3}\right)}
$$

11. $m(x)=5^{x}$
$t(x)=3 m(x)-2$

The graph of the function $m(x)$ is stretched vertically by a factor of 3 and vertically translated down 2 units to produce $t(x)$.

$$
t(x)=3 \cdot 5 x-2
$$

12. $m(x)=e^{x}$
$t(x)=\frac{1}{2} m(x)+4$

The graph of the functions $m(x)$ is vertically compressed by a factor of 1/2 and vertically translated up 4 units to produce $\mathrm{t}(\mathrm{x})$.

$$
t(x)=\frac{1}{2} \cdot e^{x}+4
$$

$$
\text { 14. } \begin{array}{ll}
m(x)=7^{x} \\
t(x) & =m(0.5 x+2)
\end{array}
$$

The graph of the function $m(x)$ is stretched horizontally by a factor of 2 and horizontally translated left 4 units to produce $t(x)$.
$t(x)=7^{0.5 x+2}$ or $t(x)=7^{0.5(x+4)}$
15. $m(x)=6 x$
$t(x)=-2 m(-x)+3$
The graph of the function $m(x)$ is reflected over the x-axis and reflected over the y-axis, vertically stretched by a factor of 2 , and vertically translated up 3 units to produce $\mathrm{t}(\mathrm{x})$.

$$
t(x)=-2 \cdot 6^{-x}+3
$$

