Name

_____ Date _____ Period _____

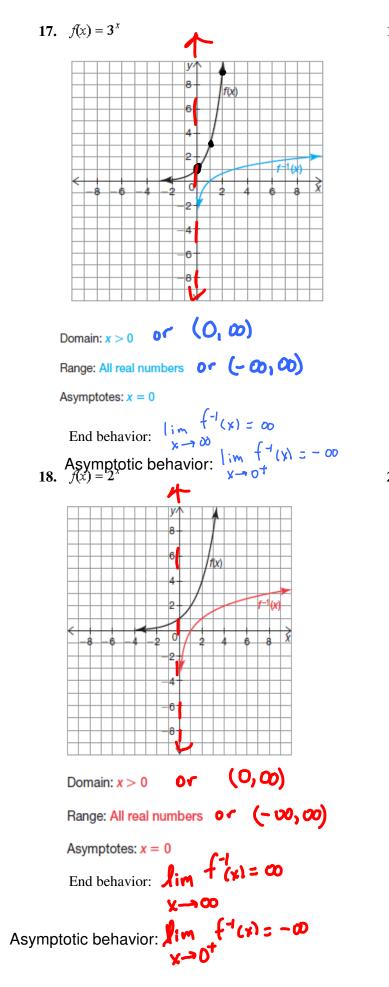
12.4 Skills Practice: Feel the Earth Move **Logarithmic Functions**

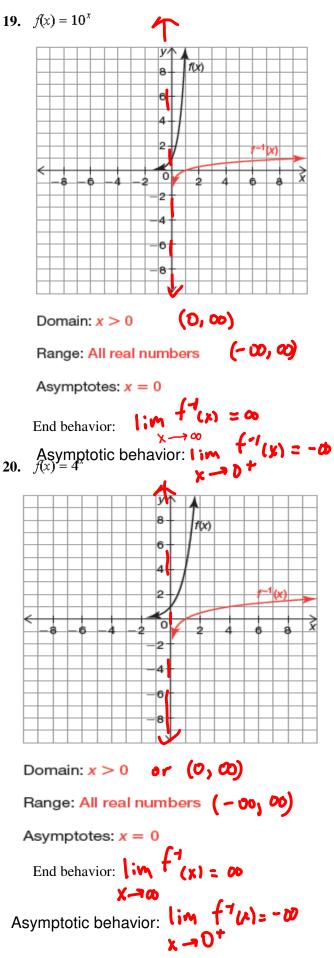
Vocabulary

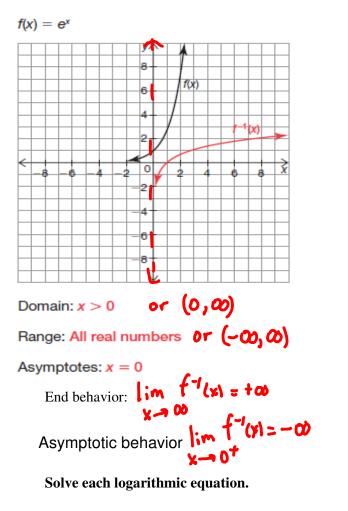
Г

Write the term that best completes each sentence.

	logarithm	logarithmic function	common logarithm	natural logarithm
1	. The	logarithm	of a number for a giv	en base is the exponent to which
	the base must be raised in order to produce that number.			
2	. A	natural logarithm	is a logarithm with bas	e e, and is usually written as <i>In.</i>
3	. A	logarithmic function	is a function involving a logarithm.	
4	. A	common logarithm	is a logarithm with a ba	ase 10 and is usually written without
	a base sp	pecified.		
	Problem Set Write each exponential equation as a corresponding logarithmic equation.			
5.	3 ² = 9	$\log_{3}(9) = 2$	8. $10^{-5} = \frac{10}{10}$	$\frac{1}{\log(1000)} \log\left(\frac{1}{100,000}\right) = -5$
6.	5 ⁴ = 625	log ₅ (625) = 4	$9. \left(\frac{1}{2}\right)^5 = \frac{1}{2}$	$lig_{\frac{1}{2}} = \log_{\frac{1}{2}} \left(\frac{1}{32} \right) = 5$

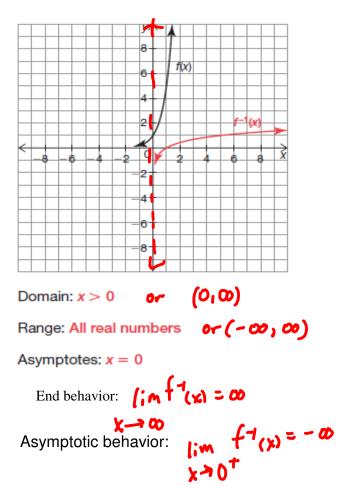

10. $\left(\frac{1}{11}\right)^{-2} = 121$ $\log_{\frac{1}{2}}(121) = -2$ 7. $4^{-3} = \frac{1}{64}$ $\log_4\left(\frac{1}{64}\right) = -3$


Write each logarithmic equation as a corresponding exponential equation.


14. $\log_6\left(\frac{1}{1296}\right) = -4$ $6^{-4} = \frac{1}{1296}$ 11. $\log_7\left(\frac{1}{49}\right) = -2$ 1-2 = 49 15. $\log_{\frac{1}{5}} \left(\frac{1}{125} \right) = 3$ $\left(\frac{1}{5} \right)^3 = \frac{1}{125}$ 12. $\log_{\frac{1}{3}}\left(\frac{1}{729}\right) = 6$ $\left(\frac{1}{3}\right)^6 = \frac{1}{729}$ 13. $\log_2(128) = 7$ 16. $\log_9(729) = 3$ $2^7 = 128$

 $9^3 = 729$

Graph the inverse of each exponential function f(x). Then, describe the domain, range, asymptotes, and end behavior of the inverse.



23.
$$-2 = \log_9 \left(\frac{1}{b}\right)$$
$$\frac{1}{b} = 9^{-2}$$
$$\frac{1}{b} = \frac{1}{81}$$
$$\frac{1}{b} = 81$$

24.
$$-0.903 \approx x \cdot \log(0.5)$$
$$-0.903 \approx x \cdot -0.301$$
$$\frac{-0.903}{-0.301} = x$$
$$3 = x$$
$$3 = x$$
$$3 = x$$

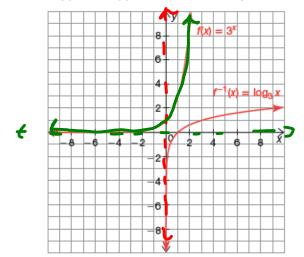
 $n = 3^2$ n = 9

27.
$$0.058 \approx \ln z$$
 $e^{0.058} \approx z$

$$1.06 \approx z$$

$$28. -1.349 = \frac{1}{2} \log \left(\frac{g}{1000} \right) \quad 2 \cdot (-1.349) = \log \left(\frac{g}{1000} \right)$$

$$-2.698 = \log \left(\frac{g}{1000} \right)$$


$$10^{-2.698} = \frac{g}{1000}$$

$$0.002 \approx \frac{g}{1000}$$

$$2 \approx g$$

I Feel the Earth Move Logarithmic Functions

- **1.** Given: $f(x) = 3^x$.
 - a. Write the function $f^{-1}(x)$, the inverse of $f(x) = 3^x$. The inverse of $f(x) = 3^x$ is $f^{-1}(x) = \log_3 x$.
 - **b.** Graph and label the functions f(x) and $f^{-1}(x)$ on the coordinate plane.

c. Describe how to calculate $f^{-1}(3)$ without a calculator. Then, calculate $f^{-1}(3)$, $f^{-1}(9)$, and $f^{-1}(27)$. I know that $f^{-1}(3) = \log_3 3$, which can be written in exponential form as $3^y = 3$. Therefore, y must be equal to 1 and $f^{-1}(3) = 1$.

 $f^{-1}(3) = \log_3 3$ = 1 $f^{-1}(9) = \log_3 9$ = 2 $f^{-1}(27) = \log_2 27$

d. Determine the domain, range, asymptotes, intercepts, end behavior, and intervals of increase and decrease for $f^{-1}(x)$.

Domain; (D, 00) Range: (-00,00) Asymptote: x=0 Intercept:(1,0)

End Behavior: lim f⁻¹(x) = 00 x-00 happotote Behavior: lim f⁻¹(x) = -00 x-0⁺ Increasing on the Internal (K)