Date \qquad Period \qquad

Vocabulary

Write the term that best completes each sentence.

logarithm	logarithmic function	common logarithm
natural logarithm		

1. The \qquad of a number for a given base is the exponent to which the base must be raised in order to produce that number.
2. A \qquad is a logarithm with base e, and is usually written as \ln.
3. A \qquad logarithmic function is a function involving a logarithm.
4. A \qquad is a logarithm with a base 10 and is usually written without a base specified.

Problem Set

Write each exponential equation as a corresponding logarithmic equation.

8. $10^{-5}=\frac{1}{100,000}$

$$
\log \left|\frac{1}{100,000}\right|=-5
$$

6. $5^{4}=625 \quad \log _{5}(625)=4$
7. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$

$$
\log _{\frac{1}{2}}\left|\frac{1}{32}\right|=5
$$

7. $4^{-3}=\frac{1}{64}$
$\log _{4}\left|\frac{1}{64}\right|=-3$
8. $\left(\frac{1}{11}\right)^{-2}=121$

$$
\log _{\frac{1}{17}}(121)=-2
$$

Write each logarithmic equation as a corresponding exponential equation.
11. $\log _{7}\left(\frac{1}{49}\right)=-2 \quad 7^{-2}=\frac{1}{49}$
14. $\log _{6}\left(\frac{1}{1296}\right)=-4 \quad 6^{-4}=\frac{1}{1296}$
12. $\log _{\frac{1}{3}}\left(\frac{1}{729}\right)=6 \quad\left(\frac{1}{3}\right)^{6}=\frac{1}{729}$
15. $\log _{\frac{1}{5}}\left(\frac{1}{125}\right)=3 \quad\left(\frac{1}{5}\right)^{3}=\frac{1}{125}$
13. $\log _{2}(128)=7$

$$
2^{7}=128
$$

16. $\quad \log _{9}(729)=3$

$$
g^{3}=729
$$

Graph the inverse of each exponential function $f(x)$. Then, describe the domain, range, asymptotes, and end behavior of the inverse.
17. $f(x)=3^{x}$

Domain: $x>0$ or $(0, \infty)$
Range: All real numbers or $(-\infty, \infty)$
Asymptotes: $x=0$
End behavior: $\lim _{x \rightarrow \infty} f^{-1}(x)=\infty$
Asymptotic behavior: $\lim _{x \rightarrow 0^{+}} f^{-1}(x)=-\infty$
18. $f(x)=2^{\infty} \quad x \rightarrow 0^{+}$

Domain: $x>0$ or $(0, \infty)$
Range: All real numbers of $(-\infty, \infty)$
Asymptotes: $x=0$
End behavior: $\lim ^{f^{-1}(x)=\infty}$

$x \rightarrow \infty$

Asymptotic behavior: $\lim _{x \rightarrow 0^{+}} f^{-1}(x)=-\infty$
$x \rightarrow 0^{+}$
19. $f(x)=10^{x}$

Domain: $x>0 \quad(0, \infty)$
Range: All real numbers $\quad(-\infty, \infty)$
Asymptotes: $x=0$
End behavior: $\lim ^{f^{-1}(x)}=\infty$

$$
\begin{aligned}
& \text { Asymptotic behavior: } \left.\lim _{x \rightarrow 0^{+}} f^{-1}(x)=-\infty\right) \\
& f(x)=4^{+}
\end{aligned}
$$

20. $f(x)=4^{4} \quad x \rightarrow 0^{+}$

Domain: $x>0$ or $(0, \infty)$
Range: All real numbers $(-00, \infty)$
Asymptotes: $x=0$
End behavior: $\lim ^{f^{-1}}(x)=\infty$
$x \rightarrow \infty$
Asymptotic behavior: $\lim _{x \rightarrow 0^{+}} f^{-1}(x)=-\infty$

