8.1 --2016 Complex Numbers

8.1 Complex Numbers
 $$
\sqrt{-1}=i \quad i^{2}=-1
$$
 Basic Concepts of Complex Numbers : Complex Solutions of Equations : Operations on Complex Numbers

Write each number as a product of a real number and i .
18. $\sqrt{-36}$

$\begin{array}{r}24 .-\sqrt{-80} \\ -\sqrt{-1 \cdot 16 \cdot 5} \\ -4 i \sqrt{5}\end{array}$
40. $\sqrt{-5} \cdot \sqrt{-15}$
$i \sqrt{5} \cdot i \sqrt{15}$
$i^{2} \sqrt{5^{2} \cdot 3}$
48. $\frac{\sqrt{-12} \cdot \sqrt{-6}}{\sqrt{8}}$
$\frac{2 i \sqrt{3} \cdot i \sqrt{6}}{2 \sqrt{2}}$
$\frac{-2 \sqrt{18}}{2 \sqrt{2}}$
Write each number in standard form, a +bi .
54. $\frac{-5+\sqrt{-50}}{10}=\frac{-5}{10}+\frac{5 i \sqrt{2}}{10}=\frac{-1}{2}+\frac{\sqrt{2}}{2} i$
$-1 \sqrt{9}$
-3

Solve each quadratic equation and express all nonreal complex solution in terms of i.
28. $x^{2}+48=0$

$$
\begin{aligned}
& \sqrt{x^{2}}=\sqrt{-48} \\
& x= \pm \sqrt{-1 \cdot 16 \cdot 3} \\
& x= \pm 4 i \sqrt{3}
\end{aligned}
$$

30. $2 x^{2}+3 x=-2$

$$
\begin{aligned}
& 2 x^{2}+3 x+2=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
x=\frac{-3 \pm \sqrt{9-4(2)(2)}}{4}
$$

$$
x=\frac{-3 \pm \sqrt{-7}}{4}=\frac{-3}{4} \pm \frac{\sqrt{7}}{4} i
$$

Find each sum, difference, or product. Write the answer in standard form, a +bi .
60. $(-4-i)+(2+3 i)+(6+4 i)$

64. $(-\sqrt{2+3 i)(4-2 i})$
$-8+4 i+7 i-6 i^{2}$
$-8+11 i+6$
$-2+14 i$

$$
\begin{aligned}
& \text { 78. }-5 i(4-3 i)^{2} \\
& -5 i(4-3 i)(4-3 i) \\
& -5 i\left[16-12 i-12 i+9 i^{2}\right] \\
& -5 i[16-24 i-9] \\
& -5 i[7-24 i] \\
& -35 i+120 i^{2} \\
& -120-35 i]
\end{aligned}
$$

Find each quotient. Write the answer in standard form, a +bi .
104. $\frac{12}{-i} \cdot \frac{i}{i}$
96. $\frac{14+5 i}{3+2 i} \cdot \frac{3-2 i}{3-2 i}=\frac{42-28 i+15 i-10 i^{2}}{9-6 i+6 i-\frac{11 i^{2}}{+4}}$

$$
\frac{12 i}{-1 i^{2}}=12 i
$$

$=\frac{52-13 i}{13}$
$4-i$

$$
=\frac{52}{13}-\frac{13 i}{13}=4-i
$$

80. $(3-i)(3+i)(2-6 i)$

$$
9+3 i-3 i-i^{2}
$$

$$
10(2-6 i)
$$

$$
20-60 i
$$

