DIRECTIONS: For each function, name the x-coordinate of any discontinuities and tell if they are removable (hole in the graph) or infinite (vertical asymptote). Also, use end behavior to determine any horizontal asymptotes.

1) $f(x)=\frac{x-9}{2 x-6}=\frac{x-9}{2(x-3)}$

Location of discontinuity: $x=3$
Type of discontinuity: vertical asymptote

x	$-1,000,000,000$	$-1,000,000$	$1,000,000$	$1,000,000,000$
$f(x)$	0.500	0.500	.4999	.49999

$$
\lim _{x \rightarrow \infty} f(x)=0.5
$$

Horizontal Asymptote: $y=0.5$
$\lim _{x \rightarrow-\infty} f(x)=0.5$
2) $f(x)=\frac{6 x^{2}}{2 x^{2}-8}=\frac{6 x^{2}}{2\left(x^{2}-4\right)}=\frac{6 x^{2}}{2(x-2)(x+2)}$

Locations of discontinuities: $x=2, x=-2$
Type of discontinuities: Vevhcal asymptotes

x	$-1,000,000,000$	$-1,000,000$	$1,000,000$	$1,000,000,000$
$f(x)$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=3 \\
& \lim _{x \rightarrow-\infty} f(x)=3
\end{aligned}
$$

Horizontal Asymptote: $y=3$
\qquad
3) $f(x)=\frac{1}{x+6}$

Location of discontinuity: $x=-6$
Type of discontinuity: \qquad vertical asymptote

x	$-1,000,000,000$	$-1,000,000$	$1,000,000$	$1,000,000,000$
$f(x)$	-1.00×10^{-9}	-1.00×10^{-6}	$9.999 . . \times 10^{-7}$	$9.99 . . \times 10^{-10}$

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

Horizontal Asymptote: $y=0$

$$
\lim _{x \rightarrow-\infty} f(x)=\underline{0}
$$

4) $f(x)=\frac{x^{2}+2 x-8}{4 x-3} \frac{(x+4)(x-2)}{(4 x-3)}$

Location of discontinuity: $x=3 / 4$
Type of discontinuity: Vevhcal asymptote

x	$-1,000,000,000$	$-1,000,000$	$1,000,000$	$1,000,000,000$
$f(x)$	$-2.499 \cdot \cdots \times 10^{8}$	-2.49×10^{5}	2.5×10^{5}	2.5×10^{8}

$\lim _{x \rightarrow \infty} f(x)=\infty$
Horizontal Asymptote: none

$$
\lim _{x \rightarrow-\infty} f(x)=-\boldsymbol{\infty}
$$

***Do you think you can come up with the end behavior for rational functions just by looking at the equation?

