\qquad

For each rational function, determine all of the characteristics listed. Remember to first simplify the function!
A. Identify any discontinuities.
B. For discontinuities that are vertical asymptotes, write the equation.
C. For discontinuities that are holes in the graph, name the ordered pair.
D. Identify the end behavior of the function using limit statements.
E. If there is a horizontal asymptote, write the equation.
F. Identify any x-intercepts.
G. Identify any y-intercepts.
H. Make a table of values and graph the function on the axes provided.

1. $f(x)=\frac{2 x+2}{x+1}=\frac{2(x+1)}{(x+1)}=2$
A. $x=-1$
B. $n O V A$
C. $(-1,2)$ thole in graph
D. $\lim _{x \rightarrow \infty} f(x)=2 \quad \lim _{x \rightarrow-\infty} f(x)=2$
E. nO H.A.
F. no x-int
G. $(0,2)$

-4	-3	-2	-1	0	1	2
2	2	2	una	2	2	2

2. $f(x)=\frac{x}{x^{2}-4 x} \frac{x}{x(x-4)}=\frac{1}{x-4}$
A. $x=0, x=4$
B. VA at $x=4$
c. hole at $(0,-1 / 4)$
D. $\lim _{x \rightarrow \infty} f(x)=0 \quad \lim _{x \rightarrow-\infty} f(x)=0$
E. $y=0$
F. $0=\frac{1}{x \cdot 4} \quad 0 \neq 1$ no x-intercepts
3. $y=\frac{1}{0-y}=-\frac{1}{4}$ hov at $x=0$ so no y-int.

	-2	-1	0	1	2	3	4	5
$-1 / 6$	$-1 / 5$	have	$-1 / 3$	$-1 / 2$	-1	und	1	$1 / 2$

\qquad
3. $f(x)=\frac{x+1}{x-3}$
A. $x=3$
B. VA. at $x=3$
c. no hole
D. $\lim _{x \rightarrow \infty} f(x)=1 \quad \lim _{x \rightarrow-\infty} f(x)=1$
E. $y=1$
F. $0=\frac{x+1}{x-3} \quad x+1=0 \quad x=-1 \quad(-1,0)$
G. $y=\frac{0+1}{0-3}=-\frac{1}{3} \quad(0,-1 / 3)$

0	1	2	3	4	5	6
$-1 / 3$	-1	-3	and	5	3	$7 / 332^{2 / 3}$

4. $f(x)=\frac{x+3}{x^{2}+7 x+12}=\frac{(x+3)}{(x+3)(x+4)}=\frac{1}{x+4}$
А. $x=-3 \quad x=-4$
B. V.A. at $x=-4$
c. hole at $(-3,1)$
D. $\lim _{x \rightarrow \infty} f(x)=0 \quad \lim _{x \rightarrow-\infty} f(x)=0$
е. $y=0$
F. $0=\frac{1}{x+y} \quad o \neq 1$ no x-int
G. $y=\frac{1}{0+4}=\frac{1}{4} \quad(0,1 / 4)$

-7	-6	-5	-4	-3	-2	-1
$-1 / 3$	$-1 / 12$	-1	and	hole	$1 / 2$	$1 / 3$
$(-3,1)$						

