Rational Functions Roundtable

$$f(x) = \frac{x^2 - x - 6}{x^2 + 8x + 12}$$

1. Factor the numerator and denominator of the rational function and simplify.	$f(x) = \frac{(x-3)(x+2)}{(x+b)(x+2)}$
2. Determine any discontinuities. If a discontinuity is	$= \frac{(\chi-3)}{(\chi+b)}$
2. Determine any discontinuities. If a discontinuity is removable (hole), state the ordered pair. If the discontinuity is infinite (vertical asymptote), state the equation of the vertical asymptote.	x = -6 vertical asymptote (-2, -5/4) hole
3. Determine the end behavior using limits.	$\lim_{x \to -\infty} f(x) = \underline{\qquad}$ $\lim_{x \to \infty} f(x) = \underline{\qquad}$
4. Write the equation of any horizontal asymptotes.	y=1
5. Find the x-intercept (s) and y-intercept	$y_{-1nt} \rightarrow (0, -1/2)$ $y_{-1nt} \rightarrow (3, 0)$
6. Make a table of values and sketch the graph $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
 Use limits to give the behavior of the function near the vertical asymptotes. 	$\lim_{X \to b^+} f(x) = \infty \lim_{X \to b^+} f(x) = -\infty$
8. Determine the domain and range of the function.	$D (-\infty, -u) \vee (-u, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, 1) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-5/4, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -5/4) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -2) \cup (-2, -2) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -2) \cup (-2, -2) \cup (-2, -2) \cup (-2, -2) \\ R (-\infty, -2) \cup (-2, -2$
	$(-\infty, -1, 25)$ $(-1, 25, 1)$ $(1, -1)$

Rational Functions Roundtable $g(x) = \frac{1}{x^2 - 1}$

	1.	Factor the numerator and denominator of the rational function and simplify.	^f (x) ⁻ (X	<u>4</u> -2)(X:	+2)		
	2.	Determine any discontinuities. If a discontinuity is removable (hole), state the ordered pair. If the discontinuity is infinite (vertical asymptote), state the equation of the vertical asymptote.	Vevano X	xal a.sy = 2	Nyptal-C X = -	rs 2	_
	3.	Determine the end behavior using limits.	lim _x	$f(x) = \int_{x \to \infty} f(x) f(x) =$	=0		
	4.	Write the equation of any horizontal asymptotes.	y = 0)			
	5.	Find the x-intercept (s) and y-intercept	$0 = \frac{4}{\sqrt{24}}$		y=	9 0 -4 = -1	
	6.	Make a table of values and sketch the graph	4 \$0	NO X-IN	t .	(0,-1)	_
<u>- 4</u> 3	- <u>3</u> 0.8	-2, -1 0 1 2 3 und -1.3 -1 -1.3 und 0.8					•
	7.	Use limits to give the behavior of the function near the vertical asymptotes .	lim +(x+-2: lim -	(x)=00	lim x=-2+	$f(x) = \infty$	
	8.	Determine the domain and range of the function.	D(- ∞,	-2)v(-2,2)	$\frac{\sqrt{2}}{\sqrt{2}}$	

Rational Functions Roundtable

h(x) = -	$27 - 3x^2$		
n(x) =	$x^2 - 5x + 6$		

1. Factor the numerator and denominator of the	
rational function and simplify.	$-3(x^{-9})$ $-3(x^{-3})(x+3)$
	$\frac{-3(x^{2}-9)}{(x-3)(x-2)} = \frac{-3(x-3)(x+3)}{(x-3)(x-2)}$
	- 3(x+3)
	(x-2)
2. Determine any discontinuities. If a discontinuity is removable (hole), state the ordered pair. If the	hdeat (3,-18)
discontinuity is infinite (vertical asymptote), state	
the equation of the vertical asymptote.	V.A. at x=2
3. Determine the end behavior using limits.	$\lim_{x \to -\infty} f(x) = \underline{-3}$
	- 3
	$\lim_{x \to \infty} f(x) = \underline{\qquad}$
4. Write the equation of any horizontal asymptotes.	11 M Contraction
	x = -3 $f(x) = -3$ $hm f(x) = -3$ $x = -3$
5. Find the x-intercept (s) and y-intercept	0=-3(x+2) (-3.2) y=-3(3) q
	$-3 \times -9 = 0$
6. Make a table of values and sketch the graph	
a 4.5 12 und und -10.5 -8	+ <u>€</u> <u>¥+23456</u> +
٤	
7. Use limits to give the behavior of the function near	v v v v v v v v v v v v v v v v v v v
the vertical asymptotes.	$\lim_{x\to\infty} f(x) = g(x) = -\infty$
	x72 x72
8. Determine the domain and range of the function.	$D \left(- \alpha \cdot 2 \right) \left(1 - 2 \right) \left(2 - \alpha \right)$
	$D (-\infty, 2) \vee (2,3) \vee (3,\infty)$ $R (-\infty, -18) \vee (-18, -3) \vee (-3,\infty)$
	$R (-00, -18) \vee (-18, -3) \vee (-3, 0)$

Rational Functions Roundtable

$$k(x) = \frac{6x^2 - 8}{2x^2 - 8}$$

1.	Factor the numerator and denominator of the rational function and simplify.	$\frac{2(3x^{2}-4)}{2(x^{2}-4)} = \frac{3x^{2}-4}{(x-2)(x+2)}$
2.	Determine any discontinuities. If a discontinuity is removable (hole), state the ordered pair. If the discontinuity is infinite (vertical asymptote), state the equation of the vertical asymptote.	vertical asymptotes x=2 $x=-2$
3.	Determine the end behavior using limits.	$\lim_{x \to -\infty} f(x) = \underline{3}$ $\lim_{x \to \infty} f(x) = \underline{3}$
4.	Write the equation of any horizontal asymptotes.	y = 3
5.	Find the x-intercept (s) and y-intercept	$0 = \frac{3x^2 - 4}{(x - 2)(mz)} \frac{3x^2 - 4 = 0}{x = \pm \sqrt{4}} \frac{y = \frac{0 - 4}{(0 - 2)(0 rz)}}{(x - 2)(mz)} = \frac{-4}{-4}$
6. <u>4 -3</u> .7 <u>4.4</u>	Make a table of values and sketch the graph -2 -1 0 1 2 3 1 4 3 1 3 4 4 4 3	
7.	Use limits to give the behavior of the function near the vertical asymptotes .	$\lim_{x \to -a^{-}} f(x) = \infty \lim_{x \to -a^{+}} f(x) = -\infty$ $\lim_{x \to -a^{-}} f(x) = -\infty \lim_{x \to a^{+}} f(x) = \infty$
8.	Determine the domain and range of the function.	$\frac{1}{2} = \frac{1}{2} = \frac{1}$