Section 4.1 (Day 3) Review of Quadratic Functions and Graphs

	$f(x)=a(x \text { Vertex Form }$	
Graphss and Their Furnctions		
a. i. $f(x)=-(x+2)^{2}-4$	$\text { g- } f(x)=-(x+4)=-2$. d. $f(x)=(x-1)=$
Methods to Identity and Deternime KCey Characteristics		
Axis of Symmentry $x=n$	x-intercept(s) Sulbstitute 0 for y, and then solve for x ussing the quadratic forrnulla. factoring. or a graphing calculatior.	Concavity Concawe up vilhern a >0 Concave dovin vwhen a <0
Vertex (H, K) 3 -insterceprt Substiturte ofor x, and then solve for y -		

PROBLEM 2 What Do You Know?

1. Analyze each graph. Then, circle the function(s) which could model the graph. Describe the reasoning you used to either eliminate or choose each function.
a.

$$
f_{1}(x)=-2(x+1)(x+4)
$$

The function f_{1} is a possibility because it has a negative a-value and 2 negative x-intercepts.
$f_{4}(x)=2 x^{2}-8.9$
The function f_{4} can be eliminated because it has a positive a-value which means the graph would be concave up.
$f_{5}(x)=2(x-1)(x-4)$
The function f_{5} can be eliminated because it has a positive a-value which means the graph would be concave up.

$$
f_{2}(x)=-\frac{1}{3} x^{2}-3 x-6
$$

The function f_{2} is a possibility because it has a negative a-value and a negative y-intercept.
$f_{3}(x)=2(x+1)(x+4)$
The function f_{3} can be eliminated because it has a positive a-value which means the graph would be concave up.
$f_{6}(x)=-(x-6)^{2}+3$
The function f_{6} can be eliminated because its vertex is in Quadrant 1 .

Think about the information given by each function and the relactive position of the graph.
$f_{7}(x)=-3(x+2)(x-3)$
The function f_{7} can be sliminated because it has one positive and one nedsiive x-intercept.
$f_{\mathrm{B}}(x)=-(x+6)^{2}+3$
The function f_{s} is a possibility because it has a negative a-value and a vertex in Quadrant II.
b.

$$
\begin{aligned}
& f_{1}(x)=2(x-75)^{2}-92 \\
& \text { The fumction } f_{1} \text { is a } \\
& \text { possibility berause it has } \\
& \text { a positive a-value mnalkimg } \\
& \text { it oomoave up, arnd a } \\
& \text { vertex in Quacirant IV }
\end{aligned}
$$

$f_{2}(x)=(x-8)(x+2)$
The fuanction F_{z} carn be eliminated because it does mot have 2 positive x-intercepts.
$f_{s}(x)=-2(x-75)^{2}-92$ The funnction $F_{\text {s }}$ can be eliminnated becausse it has a megative a-valuse whicln means the grapln would be ooncave downr.

$f_{9}(x)=x^{2}+6 x-2$
The function F_{s} can be
ellinninated becaurse it has a megative y-intercept.
the function 1$)(x-3)$
eliminated becavsse it has a negative a-value which means the graph vould be comcave dovnn.
$f_{7}(x)=2(x+4)^{2}-2$
The function f_{7} can be
eliminated berausse it has
a vertex in Quadrant ill.
$f_{0}(x)=(x+1)(x+3)$
The function $F_{\text {is }}$ carn be
eliminated becausse it has 2 megative x-intercepts.

Use the given information to determine the most efficient form you could use to write the quadratic function. Write standard form, factored form, or vertex form.
7. vertex $(3,7)$ and point $(1,10)$
vertex form
8. points (1, 0), (4, -3), and (7, 0)
factored form
9. y-intercept $(0,3)$ and axis of symmetry $-\frac{3}{8}$
standard form

Convert each quadratic function in factored form to standard form.

$$
\text { 13. } \begin{aligned}
f(x) & =(x+5)(x-7) \\
f(x) & =x^{2}-7 x+5 x-35 \\
& =x^{2}-2 x-35
\end{aligned}
$$

$$
\text { 14. } \begin{aligned}
f(x) & =(x+2)(x+9) \\
f(x) & =x^{2}+9 x+2 x+18 \\
& =x^{2}+11 x+18
\end{aligned}
$$

Convert each quadratic function in vertex form to standard form.
19. $f(x)=3(x-4)^{2}+7$
$f(x)=3\left(x^{2}-8 x+16\right)+7$
$=3 x^{2}-24 x+55$
20. $f(x)=-2(x+1)^{2}-5$
$f(x)=-2\left(x^{2}+2 x+1\right)-5$
$=-2 x^{2}-4 x-7$

