Chapter 12
Graphing Exponential and Logarithm Functions

Hour \qquad

1. Determine whether each function represents exponential growth or exponential decay justify your answer
a. $m(x)=\frac{1}{5}^{x}$
b. $n(x)=7.8^{x}$
c. $p(x)=\frac{8}{9}^{-x}=\frac{9}{8}^{x}$

Decay; $0<r<1$
Growth; $r>1$ Growth; $r>1$
2. Identify the characteristics of the graph of the function $g(x)=8^{x}$. (You might want to sketch the graph.)
a. Asymptotes: \qquad
b. Intercepts: \qquad $(0,1)$
c. End behavior: $\lim _{x \rightarrow-\infty} g(x)=0$

$$
\lim _{x}+\infty g(x)=\infty
$$

Complete the following word problems, helpful formulas are given be sure to include labels and round appropriately.

$$
A(t)=A_{o}\left(\frac{1}{2}\right)^{\frac{t}{h}} \quad A(t)=P\left(1+\frac{r}{n}\right)^{n t} \quad N(t)=N_{0} e^{r t}
$$

3. The population of a city in 2000 was 28,500 people. Since then, the population has increased at a rate of 2.3% each year.
a. Write a function that describes the population as a function of the number of years, t, since 2000.

$$
N(t)=28,500 e^{.023 t}
$$

b. If the rate of population growth remains the same, how many people will live in the city in 2020 ?

$$
N(20)=28,500 e^{.023(20)}
$$

45,146 people
4. Potassium- 42 has a half-life of 12.4 hours. The initial amount of potassium- 42 is 848 grams.
a. Write the half-life functions for Potassium-42.

$$
A(t)=848\left(\frac{1}{2}\right)^{\frac{t}{12} \cdot 4}
$$

b. Predict the amount of Potassium-42 remaining after 62 hours.
ancon
b. Predict how much money the group will have at the end of 10 years.

$$
A(10)=10000\left(6+\frac{.0 y}{4}\right)^{4(1) 1}=14,888.68
$$

5. A club deposits $\$ 10,000$ into an account that compounds interest quarterly at a rate of 4%.
a. Write an equation that can be used to predict the amount of money in the account over a period of time, t.

$$
A(t)=10000\left(1+\frac{004}{4}\right)^{4 t}
$$

6. John left for college with $\$ 1,300$ in his checking account. The table describes how the amount of money decreases at a steady rate after time, t weeks.

Time (weeks)	Aft), Money in account (\$)
0	1,300
1	1,170
2	1,053
3	948
4	853

a. Write an equation that describe the amount of money $A(t)$ after t weeks.

$$
A(t)=1300(.9)^{t}
$$

b. Calculate the amount of money in the account after 18 weeks.

$$
A(18)=1300(-9)^{8}=195.12
$$

7. Describe the transformation on the function $r(x)=\log _{6}(x)$:
a. $p(x)=\log _{6}(-x)+6$
$r(x)$ is reflected over the y-axis, then translated vertically 6 units up to get $p(x)$
b. $g(x)=-\log _{6}(x-4)$
$r(x)$ is reflected over the x-axis, then translated horizontally 4 units to the right.
8. The graph of the function $f(x)$ is shown.
a. Draw a graph of the inverse function, $f^{-1}(x)$, on the same coordinate grid. Show the three corresponding reference points on your graph.

b. Write an equation for the function $f^{-1}(x)$.

c. What are the asymptotes for $f(x)$ and $f^{-1}(x)$?

$$
f(x): y=0 f^{-1}(x): x=0
$$

9. Identify the characteristics of the graph of the function $f(x)=\log (-x)+5$. (You might want to sketch the graph.)
a. Domain: $(-\infty, 0)$
d. Interval of Increasing o Decreasing. $(-\infty, 0)$
b. Range: $(-\infty, \infty)$
c. Asymptotes: $X=0$
e. End behavior: $\lim _{x \rightarrow-\infty} f(x)=+\infty$
f. Asymptotic behavior: $\quad f(x)=-\infty$
10. Identify the characteristics of the graph of the function $g(x)=\ln (x)$. (You might want to sketch the graph.)
a. Domain: $(0, \infty)$
d. Intercepts: $(1,0)$
b. Range: $(-\infty, 00)$
e. End behavior: $\lim _{x \rightarrow 00} g(x)=0$
c. Asymptotes: $X=0$
f. Asymptotic behavior

11. Identify the characteristics of the graph of the function $h(x)=-\log _{5}(x+6)$. (You might want to sketch the graph.)
a. Domain: $(-6, \infty)$
b. Range: $\left(-\infty, \infty^{\circ}\right)$
c. Asymptotes: $x=-6$

d. Interval of increasing or decreasing:
12. The graph of the logarithmic function $f(x)$ is shown. Graph the function $k(x)=f(x-2)+4$ on the same coordinate plane. Show the three corresponding reference points on your graph.

a. Describe the transformation on $f(x)$ to create $k(x)$.

Right 2, up 4
b. Draw and label each asymptote for $\mathrm{f}(\mathrm{x})$ and $\mathrm{k}(\mathrm{x})$ on the graph.
c. Write the logarithmic function. $k(x)=$

what

13. Which is the inverse of the logarithmic function $f(x)=\log _{6} x$?
14. $f^{-1}(x)=6^{x}$
15. Write a function that reflected over the x-axis and translated two unit left of the function $f(x)=\log x$?

$$
\text { 14. } f(x)=-\log (x+2)
$$

15. Describe the intervals of increasing and decreasing for the function $(x)=\log _{6}(-x)$?
16. Name the intercept of $r(x)=2^{x}-6$?

17. Identify the domain and range for the function $f(x)=\ln x$?
18. Domain: $(0,0)$

19. The graph represents the inverse function. Graph $f(x)$ and write the equation for $f(x)$ and its inverse.

20. $f^{-1}(x)=$

21. Name the intercept of the function $f(x)=\ln (x-3)$

22. Write the equation of the function that is a vertical stretched by a factor of 5 , translated 3 units to the right and 6 units down from the function f $(x)=\log _{7} x$?
23. Describe the asymptote of the function $f(x)=\log _{6} x$.

$$
\begin{aligned}
& \text { 21. } \frac{f(x)=5 \log _{7}(x-3)-6}{\text { 22. Vertical asymptote }} \\
& x=0
\end{aligned}
$$

23. Graph the following functions and identify the following characteristics. (Remember to start with the graph of the parent function first)

Domain: $(-\infty, \infty)$
Range: $\quad(-2,00)$
Asymptote: $\quad Y=-2$
\square

Intervals of increasing or decreasing:
Increasing ($-\infty, \infty$)
24. Write the equation for $p(x)$.

b) $\quad g(x)=-\log _{4}(x+1)$

Domain: $(-1, \infty)$
Range: $(-\infty, \infty)$
Asymptote: $\quad X=-1$
Intercepts: $(0,0)$
End Behavior: $\lim _{\substack{x \rightarrow \infty \\ \text { Asymptote Behavior: }}} g(x)=-\infty$
$\lim _{x \rightarrow-1} g(x)=-\infty$ Intervals of increasing or decreasing:

Decreasing on interred $(-1, \infty)$
24. $p(x)=$

25. Rewrite the following logarithmic equation as a corresponding exponential equation or exponential equation as a logarithmic equation.
a. $\quad \log _{3} 81=4$

$$
3^{4}=81
$$

b. $3^{\frac{-1}{2}}=9 \log _{3} q=\frac{-1}{2}$
c. $e^{5} \approx 148.413$

