Chapter 12

REVIE **Graphing Exponential and Logarithm Functions**

1. Determine whether each function represents exponential growth or exponential decay justify your answer

a. $m(x) = \frac{1}{5}^{x}$ Decay 5 OLTLI Growth; [7] c. $p(x) = \frac{8^{-x}}{9} = \frac{9}{2}$ Growth; r>1

- 2. Identify the characteristics of the graph of the function $g(x) = 8^x$. (You might want to sketch the graph.)
 - Asymptotes: $\sqrt{=0}$ Intercepts: (0_1) a. b. End behavior: 1, m ___ 9 (s) = 0 c.

Complete the following word problems, helpful formulas are given be sure to include labels and round appropriately.

$$A(t) = A_o \left(\frac{1}{2}\right)^{\frac{1}{h}} \qquad A(t) = P \left(1 + \frac{r}{n}\right)^{nt} \qquad N(t) = N_0 e^{rt}$$

- **3.** The population of a city in 2000 was 28,500 people. Since then, the population has increased at a rate of 2.3% each year.
 - **a.** Write a function that describes the population as a function of the number of years, t, since 2000.

A(t) = 848(

b. If the rate of population growth remains the same, how many people will live in the city in 2020?

N(20) = 28,500 e.023 (20)

Key

Hour

Name

Date

Potassium-42 has a half-life of 12.4 hours. The initial amount of potassium-42 is 848 grams. 4.

a. Write the half-life functions for Potassium-42.

- **b.** Predict the amount of Potassium-42 remaining after 62 hours.
- 5. A club deposits 10,000 into an account that compounds interest quarterly at a rate of 4%.
 - a. Write an equation that can be used to predict the amount of money in the account over a period of time, t.

$A(t) = 10000(1 + .04)^{42}$

- **b.** Predict how much money the group will have at the end of 10 years. 4 (10) = 10
- 6. John left for college with \$1,300 in his checking account. The table describes how the amount of money decreases at a steady rate after time, t weeks.

		ッ
Time	A(t), Money	I
(weeks)	in account (\$)	
0	1,300	
1	1,170	
2	1,053	
3	948	
4	853	

a. Write an equation that describe the amount of money A(t) after t weeks.

A(t) = 1300(.9)

b. Calculate the amount of money in the account after 18 weeks.

A(18) = 1300(-9

- 7. Describe the transformation on the function $r(x) = \log_6(x)$:
 - a. $p(x) = \log_6(-x) + 6$ r(x) is reflected over the y-axis, then translated vertically 6 units up to get p(x)
 - **b.** $g(x) = -\log_6(x-4)$ r(x) is reflected over the x-axis, then translated horizontally 4 units to the right.
 - The graph of the function f(x) is shown. 8.
 - Draw a graph of the inverse function, $f^{-1}(x)$, on the same coordinate grid. a. Show the three corresponding reference points on your graph.

Write an equation for the function $f^{-1}(x)$. b. $f^{-1}(x) = \log (x)$

 $f(x): 4 = 0 f^{-1}(x): x = 0$

What are the asymptotes for f(x) and $f^{-1}(x)$?

9. Identify the characteristics of the graph of the function $f(x) = \log(-x) + 5$. (You might want to sketch the graph.)

d.

e.

f.

d.

c.

- Domain: (- 00, 0) a.
- Range: $(-\infty)$ b.
- Asymptotes: X = O c.

 $\lim_{x \to -\infty} f(x) = + 00$ End behavior: Asymptotic behavior: $\int (y) = -\infty$

Interval of Increasing of Decreasing: (- 00, 0)

(x)=00

terror (-6,0)

10. Identify the characteristics of the graph of the function $g(x) = \ln(x)$. (You might want to sketch the graph.)

- Domain[.] (0, 0) a.
- Range: (- 00,00) b.
- Asymptotes: X= 0 c.

End behavior: $\lim_{X \to 0} \Im(x) = 0$ e. f. Asymptotic behavior

Intercepts:

Identify the characteristics of the graph of the function $h(x) = -\log_5(x+6)$. (You might want to sketch the graph.) 11.

Domain: (~ 6, ∞) a. Range: (-00) b. Asymptotes: X=6 c. Interval of increasing or decreasing ۵.

12. The graph of the logarithmic function f(x) is shown. Graph the function k(x) = f(x - 2) + 4 on the same coordinate plane. Show the three corresponding reference points on your graph.

a. Describe the transformation on f(x) to create k(x).

b. Draw and label each asymptote for f(x) and k(x) on the graph.

- c. Write the logarithmic function. $k(x) = \frac{1}{2} \frac{(x-2)}{2}$
- 13. Which is the inverse of the logarithmic function $f(x) = \log_6 x$?
- 14. Write a function that reflected over the x-axis and translated two unit left of the function $f(x) = \log x$? 14. $f(x) = -\log (x+2)$
- 15. Describe the intervals of increasing and decreasing for the function $(x) = \log_6(-x)$?

16. Name the intercept of
$$r(x) = 2^x - 6$$
?

- **17.** Identify the domain and range for the function $f(x) = \ln x$?
- **18.** What is the asymptotic behavior of the function $f(x) = \ln(x+4)$?
- 19. The graph represents the inverse function. Graph f(x) and write the equation for f(x) and its inverse.

19.
$$f^{-1}(x) = \frac{\int_{0}^{1} f(x)}{\int_{0}^{1} f(x)}$$

18.

16. (0,-5

17. Domain: (0)

Range: _(- 00, 0)

$$13. f^{-1}(x) = 6^{x}$$

15. Decreasing on interval (-00,0)

20.**(4,0)**

c. $e^5 \approx 148.413$

- **20.** Name the intercept of the function $f(x) = \ln(x 3)$
- 21. Write the equation of the function that is a vertical stretched by a factor of 5, translated 3 units to the right and 6 units down from the function $(x) = \log_7 x$? 21. $f(x) = 5 \log_{10} (x-3) - 6$ 22. Vertical asymptote x=0
- **22.** Describe the asymptote of the function $f(x) = \log_6 x$.
- 23. Graph the following functions and identify the following characteristics. (Remember to start with the graph of the parent function first)

25. Rewrite the following logarithmic equation as a corresponding exponential equation or exponential equation as a logarithmic equation. **b.** $3^{\frac{-1}{2}} = 9$ **Joys**

a.
$$\log_3 81 = 4$$