\qquad

State whether the function is an exponential growth function or exponential decay function, and describe its end behavior using limits.

1) $f(x)=0.1^{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

Use a calculator to find an approximate solution to the equation.
10) -1.7959

Graph the function, then fill in the blanks.
11) $f(x)=\ln (x-4)+1$

Find the exponential function that satisfies the given conditions.
2) Initial value $=68$, decreasing at a rate of 0.48% per week
2) $y=68(.9952)^{x}$

Simplify the expression.
4) $x=20$
5) $10^{\log 17}$
5) $x=17$
4) $e^{\ln 20}$

Rewrite the expression as a sum or difference or multiple of logarithms.

$$
\text { 3) } \log _{8} \sqrt[3]{\frac{1}{64}}
$$

10) $\left(\frac{1}{5}\right)^{x}=18$

Evaluate the logarithm.

6) $\log _{3}\left(\frac{x^{9} y^{3}}{6}\right)$
6) $9 \log _{8} x+3 \log _{-2} y-\log _{3} b_{12) f(x)=-3 x+3-2}$
12)

Use a calculator to find an approximate solution to the equation.
13) $e^{-0.13 t}=0.1$
14) $4 \ln (x+2.8)=6.4$

Find the domain of the function.
15) $f(x)=\ln (9-x)$

Solve the equation.
16) $\log 5 x=\log 2+\log (x+3)$
17) $\log (2+x)-\log (x-5)=\log 4$
18) $\log _{6} x+\log _{6}(x-3)=2$

Solve the problem.
19) A cake is removed from an oven at $325^{\circ} \mathrm{F}$ and cools to 150 ${ }^{\circ} \mathrm{F}$ after 25 minutes in a room $68^{\circ} \mathrm{F}$. How long will it take the cake to cool to $120^{\circ} \mathrm{F}$?
13) $t=17.7122$
14) $x=2,1530$

16) $x=2$

18) $x=7.6847$ 5700 be compounded annually to equal $\$ 8842.57$ after 9 yr ? (Round to the nearest percent.)

Solve the problem.
21) Find the future value
22) Find the present value of a loan with an annual interest rate of 5.8% and periodic payments of $\$ 707.43$ for a term of 7 years, with payments made and interest charged 12 times per year.
23) At what interest rate must $\$$

Find the amount accumulated after investing a principal P for t years at an interest rate r.
20) $\mathrm{P}=\$ 1,000, \mathrm{t}=4, \mathrm{r}=4 \%$, compounded semiannually (k =2)
accumulated in an annuity after investing periodic payments of $\$ 450$ for 9 years at an annual interest rate of 5%, with payments made and credited 4 times per year.
${ }_{22}^{4} 48,745^{03}$
23) $5 \% 0$

Determine the doubling time of the investment.
24) $\$ 19,500$ at 5% compounded
24)
 monthly

Write the equation of the function reflected over the x-axis, left 5 units and up 3 units.

$$
\text { 25) } f(x)=4^{x}
$$

25)

