

State whether the function is an exponential growth function or exponential decay function, and describe its end behavior using limits.

> $\lim_{x \to 0} f(x) = 0$ $X \rightarrow \infty$ $\lim_{x \to \infty} f(x) =$ $X \rightarrow -\infty$

1)

3)

Find the exponential function that satisfies the given conditions. 2)

2) Initial value = 68, decreasing at a rate of 0.48% per week

Evaluate the logarithm.

3)
$$\log_8 \sqrt[3]{\frac{1}{64}}$$

1) f(x) = 0.1x

Simplify the expression. 4) eln 20

5)	10log	17
----	-------	----

Rewrite the expression as a sum or difference or multiple of logarithms.

6)
$$\log_3\left(\frac{x^9 y^3}{6}\right)$$
 6) $\frac{9 \log x + 3 \log y - \log 6}{12}$ $f(x) = -3x+3-2$

4) **x = 20**

₅₎ <u>x</u> = 17

Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

7) 4log x + 2log y

Find the solution to the equation. 8) 9 - log3(2

$$(x + 4) = 8$$

9)
$$4(7 - 3x) = \frac{1}{16}$$

8)

Use a calculator to find an approximate solution to the equation.

10)
$$\left(\frac{1}{5}\right)^{x} = 18$$
 10) -1.7959

Graph the function, then fill in the blanks.
11)
$$f(x) = ln(x - 4)+1$$
 11)

Domain:

Range:

Asymptote:_

Use a calculator to find an approximate s equation. 13) $e^{-0.13t} = 0.1$	olution to the 13) <u>t = 17.712</u> 2	Find the amount accumulated after invert t years at an interest rate r. 20) P = \$1,000, t = 4, r = 4%, compounded semiannually (k = 2)	sting a principal P for
14) 4ln (x + 2.8) = 6.4	14) X = 2,153 0	7 Solve the problem. 21) Find the future value	<u>4</u> <u>20,301</u> 98
Find the domain of the function. 15) $f(x) = \ln (9 - x)$	$(-\rho, q)$	accumulated in an annuity after investing periodic payments of \$450 for 9 years at an annual interest rate of 5%, with payments made and	
Solve the equation. 16) $\log 5x = \log 2 + \log (x + 3)$	16) <u>X=2</u>	credited 4 times per year.	4 48, 745 ⁰³
17) $\log(2 + x) - \log(x - 5) = \log 4$	17) X = 3	 22) Find the present value of a loan with an annual interest rate of 5.8% and periodic payments of \$707.43 for a term of 7 years, with 	22)
18) $\log_6 x + \log_6 (x - 3) = 2$	18) X=7.681	payments made and interest charged 12 times per year.	

Solve the problem.

19) A cake is removed from an oven at 325 °F and cools to 150 °F after 25 minutes in a room 68 °F. How long will it take the cake to cool to 120 °F?

35 min 19)

23) At what interest rate must \$ 5700 be compounded annually to equal \$8842.57 after 9 yr? (Round to the nearest percent.)

57.

3.89

23)

Determine the doubling time of the investment. 24) \$19,500 at 5% compounded 24) monthly

Write the equation of the function reflected over the x-axis, left 5 units and up 3 units. 25) $f(x) = 4^x$ 25) $y = -4^x + 3$