\qquad
\qquad Period: \qquad

Section 5.1 Cubic Functions (2 Days)

\rightarrow I can identify the differences between the graph of a quadratic function and the graph of a cubic function
\rightarrow I can model volume with a cubic function
\rightarrow I can identify characteristics of the graph of a cubic function, including domain \& range, relative extrema, and intercepts

1. A rectangular prism has a length of $x \mathrm{~cm}$, width of $(4-2 x) \mathrm{cm}$, and a height of $(6-2 x) \mathrm{cm}$. Determine the volume of the prism, $V(x)$, in standard form by finding the product of the linear factors.

$$
v(x)=x(4-2 x)(6-2 x)
$$

$$
v(x)=4 x^{3}-20 x^{2}+24 x
$$

2. Sketch a graph of the function $V(x)$. Determine all key characteristics.

Domain of the function: $(-\infty, \infty)$
Domain in the context of the problem: $(0,2)$
Range of the function: $(-\infty, \infty)$
Range in the context of the problem: $(0,8.45]$
X-intercepts: $(0,0),(2,0),(3,0)$
Y-intercept: $(0,0)$
There is a relative minimum of -2.53 at $x=2.55$.
There is a relative maximum of 8.45 at $x=.78$.
The graph igincreasing/decreasing on the interval of $(-\infty, .78)$ then it is increasing decreasing on the interval of $(.78,2.55)$ then it $/ 5$ increasing/decreasing on the interval of $(2.55, \infty)$
3. What is the maximum volume of the function? What are the dimensions of the prism at this volume max. vol $=8.45 \mathrm{~cm}^{3}$

$$
\text { at } .78 \mathrm{~cm} \times 2.44 \mathrm{~cm} \times 4.44 \mathrm{~cm}
$$

Name: \qquad
Date: \qquad Period: \qquad
Section 5.2 Power Functions (3 Days)
\rightarrow I can look at the degree of the polynomial function and its leading coefficient and identify the end behavior of the graph (use limits to define end behavior)
\rightarrow I can identify whether a graph represents an even or odd degree polynomial function
\rightarrow I can determine if a function is even or odd depending on the symmetry of its graph
\rightarrow I can use the equation of a function to determine if it is even or odd algebraically
4. Use limits to determine end behavior of the function.
a. $f(x)=3 x^{2} \quad \lim _{x \rightarrow \infty} f(x)=\infty$

$$
\lim _{x \rightarrow-\infty} f(x)=\infty
$$

b. $g(x)=-4 x^{3}$

$$
\lim _{x \rightarrow \infty}
$$

$$
f(x)=-\infty
$$

\lim

$$
\lim _{x \rightarrow-\infty} f(x)=\infty
$$

c. $h(x)=\neq 12 x^{5}$

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

jim

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

d. $j(x)=6 x^{8}$

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

$$
\ln
$$

$$
f(x)=-\infty
$$

5. Use end behavior to determine whether the polynomial function is an even or odd DEGREE function.
a.

b.

 $\prod_{x \rightarrow \infty}+\infty$
even
deane
C.

d.

odd doze $\lim _{x \rightarrow \infty} f(x)=-\infty$ \lim $\lim _{x \rightarrow-\infty} f(x)=\infty$
6. Determine whether each function from question $\mathbf{5}$ is even or odd based on symmetry of the graph.
a. Even Odd Neither

Explain: Griraph is symmetric about the origen
b. Even/ Od /Neither

Explain:
c. Even Dodd/Neither

d. Even Odd Neither
E. em Graph ssymmpric abotthe organ.
\qquad
\qquad Period: \qquad
7. Determine whether the function is odd, even, or neither algebraically.
a. $f(x)=3 x^{4}-2 x^{2}-6$
$f(-x)=3 x^{4}-2 x^{2}-6 \quad$ even
b. $g(x)=-5 x^{5}+2 x^{4}-3 x^{2}+x-3$
$g(-x)=5 x^{5}+2 x^{4}-3 x^{2}-x-3$ neither
c. $h(x)=-3 x^{5}+3 x^{3}-7 x$
$h(-x)=3 x^{5}-3 x^{3}+7 x \quad$ odd

Section 5.3 Transformation and Symmetry of Polynomial Functions (1 Day)

\rightarrow I can use my knowledge of translation, reflection, and dilation to graph transformations of polynomial functions
\rightarrow I can use the symmetry of a graph to determine if the function is even or odd
8. Describe all transformations from the parent graph $f(x)=x^{3}$ to the function
a. $g(x)=-\frac{1}{2}(x-2)^{3}+6$
vertical shrink by factor of y_{2} reflection over x-axis
b. $h(x)=5(x+3)^{3}-2$

Section 5.4 Key Characteristics of Polynomial Functions (2 Days)

\rightarrow I can determine the possible number of extrema of a polynomial function depending on its degree
\rightarrow I can use the Fundamental Theorem of Algebra along with knowledge of multiple and imaginary roots to sketch graphs of polynomial functions of a given degree with a given number of zeros.
9. Determine the possible number of extrema for each polynomial.
a. $7^{\text {th }}$ degree polynomial

$$
0,2,4,6
$$

b. $10^{\text {th }}$ degree polynomial

$$
1,3,5,7,9
$$

10. Sketch a graph with the following characteristics.
a. Even degree
b. Increases to $x=0$, then decreases to $x=3$, then increases to $x=5$, then decreases
c. Relative minimum of -3
d. Two absolute maximums of 4

Name: \qquad
Date: \qquad Period: \qquad

Section 5.5 Building Cubic and Quartic Functions (1 Day)
\rightarrow I can identify the number of real, imaginary, and multiple roots of a simple polynomial function \rightarrow I can identify the type of polynomial function given a table of values (using first, second, third differences)
\rightarrow I know that multiplying polynomials yields a new polynomial function (e.g. multiplying a linear function by a cubic function yields a quartic function)
11. Determine the type of function based on common differences.

Type of function:quadratic

Type of function: \qquad linear
12. If $h(x)=f(x) \cdot g(x)$, what type of function is $h(x)$? How many real and imaginary zeros does $h(x)$ have?
$h(x)$ is a cublc function with 3 real zeros (all at $x=0$) because of multiplicity.

