Name \qquad
Chapters 6-7 Test Review Packet

Section 6.1 Analyzing Polynomial Functions

\rightarrow I can answer questions about a real-life scenario that is modeled by a polynomial function.
\rightarrow I can compute the average rate of change of a function over an interval of the domain.
For \#'s 1-2, determine the average rate of change for the given interval for each polynomial function.

1. $(1,2)$

Section 6.2 Polynomial Division
2. $(-2,0)$

1. \qquad
2.

\rightarrow I can use long division for dividing polynomials.

$$
\frac{-6-4}{0-2}-\frac{10}{2}
$$

\rightarrow I can use the remainder of polynomial division to determine if a polynomial is a factor of another polynomial.
\rightarrow I can write a polynomial as a product of its factors, as determined by polynomial division.
\rightarrow I can use synthetic division to divide by a linear polynomial of the form $x-c$.
\rightarrow I can understand that synthetic division cannot be used to divide by non-linear polynomials.
For \#'s 3-5, divide the following polynomials using either long or synthetic division.
3. $x^{4}-5 x^{3}-8 x^{2}+13 x-12 \div(x-6)$

3a. Is $(x-6)$ a factor of $x^{4}-5 x^{3}-8 x^{2}+13 x-12$? Yes No
3. $x^{3}+x^{2}-2 x+x-\frac{6}{x-6}$

Why or why not?
Remainder is Not O
4. $\left(5 x^{4}+2 x^{3}-9 x+12\right) \div\left(x^{2}-3 x+4\right)$

$$
x ^ { 2 } - 3 x + 4 \longdiv { 5 x ^ { 4 } + 2 x ^ { 3 } + 0 x ^ { 2 } - 9 x + 1 2 } \quad 1 6 x - 1 1 2
$$

4a. Is $\left(x^{2}-3 x+4\right)$ a factor of $5 x^{4}+2 x^{3}-9 x+12$? Yes No Why or why not? \qquad
5. $x^{3}-x^{2}+x-2+\frac{4}{x+1}$
5. $\left(x^{4}-x+2\right) \div(x+1)$

5a. Is $(x+1)$ a factor of $x^{4}-x+2$? Yes/No
Why or why not? Remainder is Nor O
6. Describe in full sentences why you choose synthetic or long division for \#'s 3-5. Be sure to discuss why one of the problems had to be done using long division.
\qquad because I had to divide by a quadratic.

Section 6.3 Factor Theorem and Remainder Theorem
\rightarrow I can verify that $x-c$ is a factor of a polynomial $f(x)$ by showing that $f(c)=0$.
\rightarrow I can find $f(c)$ using direct substitution or by finding the remainder with synthetic division.
7. Verify $(x+1)$ is a factor of $x^{3}+2 x^{2}-x-2$ by using the Remainder Theorem with Synthetic Division.

$$
-1 \quad \underbrace{\left\lvert\, \begin{array}{cccc}
1 & 2 & -1 & -2 \\
\downarrow & -1 & -1 & 2 \\
\hline
\end{array}\right.}_{1}
$$

\longleftarrow Remainder is 0 !

Section 6.4 Factoring Higher Order Polynomials

\rightarrow I can factor any polynomial completely using the following strategies: Difference of two squares, trinomial into two binomials, grouping, sum/difference of cubes and multiple steps.

For \#'s 8-13, factor the polynomial COMPLETELY!!
8. $x^{4}+x^{2}-20$
9. $y^{3}-8$
10. $\left(c^{3}+4 c^{2}\right)(-9 c-36)$
$\left(x^{2}-4\right)\left(x^{2}+5\right)$

$c^{2}(c+4)-9 c(c+4)$

11. $x^{4}-36$

$$
\begin{aligned}
& 12\left(x^{3}+6 x^{2}\right)(+7 x+42) \\
& x^{2}(x+6)+7(x+6) \\
& \left.\left(x^{2}+7\right)(x+6)\right)
\end{aligned}
$$

$$
\text { 13. } 2 w^{3}+54
$$

$$
2\left(w^{3}+27\right)
$$

Section 6.5 Rational Root Theorem

\rightarrow I can make a list of possible rational roots for a polynomial function.
\rightarrow I can use synthetic division to verify that a number is a root of a polynomial.
\rightarrow I can find all complex roots of a polynomial function using synthetic division and/or the quadratic formula.

For \#'s 14-15, list the possible rational zeros for the function.
14. $x^{3}-2 x^{2}+27 x-12$
15. $2 x^{3}-14 x^{2}+5 x+8$
$\frac{ \pm 1 \pm 2 \pm 3 \pm 4 \pm 6 \pm 12}{ \pm 1}$

$$
\frac{ \pm 1 \pm 2 \pm 4 \pm 8}{ \pm 1 \pm 2}
$$

$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$

For \#'s 16-17, find ALL the complex roots of a function.
16. $x^{3}+6 x^{2}+7 x+42 \quad$ Deg: 3
17. $y^{3}-8$

Deg: 3
On s Zero from Call: 2
$-6 \mid 16742$ one Zero From calc:-6

$$
\begin{aligned}
& \begin{array}{llll}
\begin{array}{lll}
1 & -6 & 0 \\
1 & 0 & 712 \\
\hline
\end{array} \\
x^{2}+7 & =0 \\
x^{2} & =-7 \\
x & = \pm \sqrt{-7}
\end{array} \quad x= \pm \sqrt{7} i
\end{aligned}
$$

Section 7.1 Solving Polynomial Inequalities
\rightarrow I can solve a polynomial inequality graphically.

$2 |$| 1 | 0 | 0 | -8 |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 8 |
| 1 | 2 | 4 | 0 |

$$
\begin{array}{cc}
\frac{x^{2}+2 x+4}{} & \frac{-2 \pm \sqrt{-12}}{2} \\
\frac{-2 \pm \sqrt{4-4(1)(4)}}{2} & \frac{-2 \pm \sqrt{4 \sqrt{3} i}}{2} \\
& -\frac{-2 \pm \sqrt{4-16}}{3} \\
& 1 \pm \sqrt{3} i
\end{array}
$$

\rightarrow I can solve a polynomial inequality algebraically using the zeros of the function and a number line.
18. Analyze the following graph and identify when the x-values show $f(x)<0$ and $f(x)>0$.

$$
\begin{array}{lll}
f(x)<0: \quad x<-1 \quad \& \quad 3<x<5 & (-\infty,-1) \cup(3,5) \\
f(x)>0:-1<x<3 \quad \& \quad x \geq 5 & (-1,3) \cup(5, \infty)
\end{array}
$$

19. Solve algebraically. Write in interval notation.

$$
\begin{gathered}
2 x^{2}+3 x \geq 5 \\
2 x^{2}+3 x-5 \geq 0 \\
(2 x+5)(x-1) \geq 0 \\
\downarrow \quad \downarrow \\
x=-\frac{5}{2} \quad x=1
\end{gathered}
$$

$-\frac{5}{2} \quad 1$

$$
\left(-\infty,-\frac{5}{2}\right] \cup[1, \infty)
$$

Section 7.3 Piecewise Functions

\rightarrow I can graph a piecewise function.
\rightarrow I can write a piecewise function given its graph.
20. Write a piecewise function to represent the following graph. Be sure to set your domain for each piece.

$$
\frac{2+2}{3-1}=\frac{4}{2}=2
$$

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad y$

Section 6.7 Pascal's Triangle and the Binomial Theorem

\rightarrow I can generate Pascal's Triangle.
\rightarrow I can use the values in Pascal's Triangle to expand binomials.
\rightarrow I can use the Binomial Theorem to expand binomials.
21. Evaluate ${ }_{19} C_{4}$ \qquad

For \#'s 22-23, use Pascal's Triangle or the Binomial Theorem to expand the binomial.
22. $(x+3)^{4}$
$1 a^{4} \quad 4 a^{3} b^{1} \quad 6 a^{2} b^{2} 4 a^{1} b^{7} \mid b^{4}$
$x^{4} \quad 4 \cdot x^{3} \cdot 3 \quad 6 \cdot x^{2} \cdot 9 \quad 4 \cdot x \cdot 27+81$
$x^{4}+12 x^{3}+54 x^{2}+108 x+81$
23. $(2 x-5)^{3}$
$1 a^{3} \quad 3 a^{2} b \quad 3 a b^{2} \quad 1 b^{3}$
$(2 x)^{3} \quad 3(2 x)^{2}(-5) \quad 3(2 x)(-5)^{2} \quad(\sim \varepsilon)^{3}$
$8 x^{3}-60 x^{2}+150 x-125$
24. Find the coefficient for x^{6} in the expansion of $(2 x+3)^{11}$.

$462 \cdot 64 x^{6} \cdot 243$

