Name: \qquad Date: \qquad Period: \qquad LTHS: Chemistry

More Concentration Practice

$$
\text { Olomass }=\frac{\text { mass solute }}{\text { mass Solution }} \times 100
$$

$\%$

1. What is the percent of NaHCO_{3} in a solution containing 25 g NaHCO_{3}, dissolved in 750 g solution?

$$
\begin{aligned}
10 & =\frac{25 g+\operatorname{dan} 3}{750 g} \times 100 \\
& =3.3 \%
\end{aligned}
$$

2. What is the percent of ethanol in a solution that contains 55 mL of ethanol dissolved in 210 mL of water?

$$
\begin{aligned}
\% & =\frac{55 m L \text { ethan }}{(210+55) \mathrm{ml}} \times 100 \\
& =20.75=21 \%
\end{aligned}
$$

3. You have 1225.0 g of a bleach solution. The solution is 6.79% sodium hypochlorite, NaOCl . How many grams of NaOCl are in the solution?

$$
\begin{aligned}
6.79 \% & =\frac{X}{1225.0} \mathrm{~g} \\
x & =83.29 \mathrm{NaOCl}
\end{aligned}
$$

4. What is the percent by volume of isopropyl alcohol in a solution that contains 65 mL of isopropyl alcohol in a 1.5 L solution?

$$
\begin{aligned}
\% & =\frac{65 \mathrm{~mL}}{1500 \mathrm{~mL}} \times 100 \\
& =4.3 \%
\end{aligned}
$$

Molarity
5. What is the molarity of an aqueous solution containing 50.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 2.0 L of solution? $50 . \mathrm{O}_{\mathrm{g}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol}}{180.189}=.278$

$$
\begin{aligned}
M & =\frac{.278 \mathrm{~mol}}{2.0 \mathrm{~m}} \\
& =.139 \mathrm{M}
\end{aligned}
$$

6. How many grams of NaOH are $250 \mathrm{~mL}=.250 \mathrm{~L}$ in 250 mL of a 3.0 M NaOH

$$
\begin{aligned}
& \text { solution? } 3.0 M=\frac{m o l}{.250 \mathrm{~L}} \\
& \mathrm{~mol}=.75 \mathrm{moHaOH} \times \frac{40.00 \mathrm{~g}}{1 \mathrm{~mol}}=30 . \mathrm{g} \\
& \mathrm{NaOH}
\end{aligned}
$$

$$
M_{1} V_{1}=M_{2} V_{2}
$$

Diluting Stock Solutions
7. How many milliliters of a 12.0 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ stock solution would you need to prepare 100.0 mL of 0.75 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
$12.0 \mathrm{~m} \times X=.75 \mu \times 100.0 \mathrm{~mL}$

$$
x=6.25 m 4
$$

8. If you dilute 15.0 mL of a 3.5 M solution to make 100.00 mL of solution, what is the molarity of the dilute solution?

$$
\left.\begin{array}{l}
3.5 M \times 15.0 m L=X \times 100.0 m L \\
X
\end{array}=.525\right\}
$$

