\qquad Chemist: \qquad
Dimensional Analysis Rally Coach
Directions: The paper is the ball. Pass it back and forth to each other, filling out the problems in your column. The chemist not solving a problem is the coach! Don't forget there is a back!

$1 \mathrm{mile}=1760 \mathrm{yds}$	$16 \mathrm{oz}=1 \mathrm{lb}$	$1 \mathrm{~L}=1.0567 \mathrm{gts}$	1 day $=24$ hours
$1 \mathrm{yd}=3 \mathrm{ft}$	$2000 \mathrm{lbs}=1 \mathrm{ton}$	$4 \mathrm{qts}=1 \mathrm{gal}$	1 hour $=60 \mathrm{mins}$
$1 \mathrm{ft}=12 \mathrm{in}$	$1 \mathrm{oz}=28.35 \mathrm{~g}$	$32 \mathrm{oz}=1 \mathrm{qt}$	$1 \mathrm{~min}=60 \mathrm{secs}$
$1 \mathrm{mile}=1.609 \mathrm{~km}$	$1 \mathrm{~kg}=2.205 \mathrm{lbs}$	$1 \mathrm{gt}=2 \mathrm{pts}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$

3. In the US lunchmeat is sold by the pound, while in Italy it is sold by the gram. How many grams of meat would you need it you needed 0.75 pounds?

$$
.75 \mathrm{lbs} \times \frac{1 \mathrm{~kg}}{2.205 \mathrm{lbs}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=340 \mathrm{~g}
$$

4. In the Tour de France, cyclists ride $1,653.6 \mathrm{~m}$ over 20 days. How many feet do they go?
5. In the US milk is sold by the gallon, while in Italy it is sold by the liter. How many liters of milk would you need to equal 1.0 gallon?

$$
1.0 \mathrm{gal} \times \frac{4 q t \mathrm{~s}}{\operatorname{lgal}} \times \frac{1 \mathrm{~L}}{1.0567 q t}=3.8 \mathrm{~L}
$$

4. After a nice meal, perhaps you'd finish it off with a 5 pound cake for dessert. What would the name of this cake be in grams?

$$
5 \mathrm{lbs} \times \frac{1 \mathrm{~kg}}{2.205 \mathrm{lbs}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=2000 \mathrm{~g}
$$

5. In Europe gasoline is sold by the liter. Assume that it takes 14 gallons of gasoline to fill the tank of a compact car. How many liters of gasoline will it take?

$$
14 \mathrm{gat} \times \frac{4 g t}{1 \mathrm{gat}} \times \frac{1 \mathrm{~L}}{1.8567 \mathrm{gt}}=53 \mathrm{~L}
$$

6. A cheetah runs $68 \mathrm{mi} /$ hour, what is the speed in $\mathrm{km} / \mathrm{sec}$?

$$
68 \mathrm{mi} / \mathrm{hr} \times \frac{1609 \mathrm{~km}}{1 \mathrm{mi}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}
$$

$.030 \mathrm{~km} / \mathrm{sec}$ (2 sf.)

