Exponential Functions

Name \qquad
(12.1)--Geometric Sequence to Exponential function

Growth vs Decay

1. Construct an exponential function from each geometric sequence. Class Example: $a_{n}=12 \cdot \mathbf{3}^{n-1}$

$$
f(n)=12 \cdot 3^{n} \cdot 3^{-1}=4 \cdot 3^{n}
$$

a. $\quad a_{n}=1.2 \cdot 3^{n-1}$
$=1.2(3)^{n}(3)^{-1}$
$=.4(3)^{n}$
b. $\quad a_{n}=64 \cdot\left(\frac{1}{4}\right)^{n-1}$
a) $f(n)=.4(3)^{n}$
$=64\left(\frac{1}{4}\right)^{n}\left(\frac{1}{4}\right)^{-1}$
b) $f(n)=256\left(\frac{1}{4}\right)^{n}$
2. Identify the base of the exponential function, determine whether each function represents exponential growth or exponential decay and explain why.
a. $\quad h(x)=2\left(\frac{4}{3}\right)^{x}$ base: $\frac{\frac{4}{3} \text { growth or decay why? } \quad b>1}{1}$
b. $m(x)=6(0.45)^{x}$ base: . 45 growth or decay why? $0<b<1$
e. $g(x)=(6)^{-x}$ base: $\frac{1}{5}$ growth or decay why? $0<6<1$

(12.1)---Half-Life

3. Class example: The half-life of a certain radioactive substance is 2 seconds. The initial amount of the substance is 500 grams. Write a function that expresses the amount of the substance remaining in the bloodstream, $A(t)$, as a function of time, t, in seconds.

$$
A(t)=500\left(\frac{1}{2}\right)^{t / 2}
$$

Use this function to predict how much of the substance remains after 6 seconds.

$$
A(\underline{6})=500\left(\frac{1}{2}\right)^{1 / 2}
$$

Use this function to predict how much of the substance remains after 10 seconds. 15.625 g

$$
A(\underline{10})=500\left(\frac{1}{2}\right)^{10 / 2}
$$

$$
A(10)=500\left(\frac{1}{2}\right)^{10 / 2}
$$

4. The half-life of a certain medication is 3 hours and there are 120 milligrams present initially. Write an exponential function that expresses the amount of the medication left, $A(t)$, as a function of time, t, in hours.

$$
A(t)=120\left(\frac{1}{2}\right)^{t / 3}
$$

Use this function to predict how much of the medication remains after 9 hours

$$
A(9)=120\left(\frac{1}{2}\right)^{9 / 3}
$$

Use this function to predict how much of the medication remains after 12 hours

$$
A(12)=120\left(\frac{1}{2}\right)^{1213}
$$

5. The table shows the approximate amounts of two types of substances in a person's body each hour after the substance was taken. The starting dose for substance A was 300 grams, and the starting dose for substance B was 450 grams.

Time Taken (Hours)	Substance A (grams)	Substance B (grams)
0	300	450
1	240	315
2	192	220.5
3	154	154

$=300(.8)^{6}=450(.7)^{6}$
$=78.6=52.9$
a. Will a greater amount of medicine A or medicine B remain in the body after 6 hours? Explain your answer.

Medicine a will have a greater amount remaining in the body after 6 hours, since medicine A has 78.6 g while medicine B only has 52.9 grams.
b. Write equations that describe the amount of medicine $A(t)$ and the amount of medicine $B(t)$ that remain in the body after t hours.

$$
A(t)=300(.8)^{t} \quad B(t)=450(.7)^{t}
$$

c. Calculate the amount of each medicine that remains in the body after 15 hours. Round each answer to the nearest gram.

$$
A(15)=300(.8)^{15} \quad B(15)=450(.7)^{15}
$$

Medicine A:
 Medicine B:

6. The figure shows the graphs of three exponential functions.

a. Which of the functions has the greatest rate of increase? \qquad
b. At which value of x do $n(x)$ and $p(x)$ have the same value? $\mathrm{X}=7.5$
c. Which function has the greatest initial value and what is that value?

$$
\text { Function } p(x) \text { has the greatest initial value of } 2000
$$

d. Which function has the greatest value at $x=3$?
6. Graph and identify the characteristics of the function $(x)=4^{x}$.

Domain: $(-\infty, \infty)$
Range: $\quad(0, \infty)$
Asymptotes: $y=0$

x	y
-1	$\frac{1}{4}$
0	1
1	4

Intercepts: $(0,1)$
End behavior: $\quad \lim _{x \rightarrow-\infty} m(x)=\underline{0} \quad \lim _{x \rightarrow \infty} m(x)=\underline{0}$
Intervals of increase or decrease: Increasing on the in terval of $(-\infty, \infty)$
7. Given $f(x)=\left(\frac{1}{5}\right)^{x}$, graph $f(x)$ and $g(x)=f(x)+2$.

Describe the following key characteristics of $\mathrm{g}(\mathrm{x})$.
Domain: $(-\infty, \infty)$
Range: $(2, \infty)$
Asymptotes: $Y=2$

Reference points of $f(x)$	Corresponding points on $g(x)$
$(-1,5)$	$(-1,7)$
$(0,1)$	$(0,3)$
$\left(1, \frac{1}{5}\right)$	$(1,215)$

End behavior: $\lim _{x \rightarrow-\infty} g(x)=\infty \quad \lim _{x \rightarrow \infty} g(x)=2$
Intervals of increase or decrease: Decreasing on the interval of $(-\infty, \infty)$
Describe the transformations performed on $f(x)$ to create $g(x)$.
Then write an equation for $g(x)$ in terms of $f(x)$.
The graph of the $f(x)$ functions is vertically translated up 2 units to create the $g(x)$ function. $g(x)=\left(\frac{1}{5}\right)^{x}+2$

Helpful formulas: $\quad A(t)=P\left(1+\frac{r}{n}\right)^{n t}$ or $\quad N(t)=N_{0} e^{r t}$
8. The population of Autin, Texas was approximately 790,000 in the year 2010 and has been continuously growing at a rate of 3.9% each year.
a. Write a function that describes the population as a function of the number of years, t, since 2010.

$$
N(t)=790,000 e^{.039 t}
$$

b. Use this function to predict the population of Autin, Texas in the year 2015.

Assume the population continues to grow at the same rate. $9(\mathrm{~s})$
b.

960,096 people

$$
N(\delta)=790,000 e^{.035(s)}
$$

c. Use this function to estimate the population of Martin in 1998.
c.
4. 494,740 people

Assume the population growth had been the same since that time.

$$
\text { Helpful formulas: } \quad A(t)=P\left(1+\frac{r}{n}\right)^{n t} \text { or } \quad N(t)=N_{0} e^{r t}
$$

9. An investor deposits $\$ 1,000$ in an account that promises 5% interest compounded quarterly.
a. Write a function that describes the amount of money as a function of the number of years, t.

$$
A(t)=1000\left(1+\frac{.05}{4}\right)^{4 t}
$$

b. Use this function to predict the amount of money will be in the account after seven years.

$$
A(7)=1000\left(1+\frac{.05}{4}\right)^{4 \cdot 7} \quad \text { b. } 1415.99
$$

c. Use this function to predict the amount of money will be in the account after fifteen years.

10. Write an equation that transforms the graph of the function $f(x)=5^{x}$ in the following ways:
a. reflection across the x-axis
a. $g(x)=-1 \cdot 5^{x}$
b. reflection across the y-axis
b. $g(x)=5^{-x}$
c. translated horizontally right six units
c.

11. For each, describe the graphical transformations on $f(x)=3^{x}$ to produce $\boldsymbol{g}(x)$.
a. $\quad g(x)=3^{-x}+5$ The graph of $g(x)$ is reflected over the y-axis and vertically translated
b. $g(x)=3^{x+2}-7 \frac{\text { The graph of the } f(x) \text { is translated horizontally left } 2 \text { units and }}{\text { vertically down } 7 \text { units to create the } g(x) \text { function. }}$
c. $g(x)=-6 \cdot 3^{x-8} \quad$ The graph of the $f(x)$ function is reflected over the x-axis, vertically stretched by a factor of 6 , and horizontally translated 8 units to the right.

