\qquad

Vocabulary and Essential Questions:

How would you describe a NORMAL DISTRIBUTION?
Draw a picture of NORMAL DISTRIBUTION and label the parts.

How would you describe STANDARD DEVIATION? how spread oct detail

Problems:

1. What percent of the data in a normal distribution is above the mean?
50%
2. What percent of the data in a normal distribution is within 1 standard deviation above and below the mean? \qquad
3. What is the mean and standard deviation of the graph?

Stock $=\mathbf{\$ 5 0}$ Implied Volatility = 20\%

4. The number of sales company employees make in a month can be represented as a normal distribution with a mean of 200 sales per month and a standard deviation of 20 sales per month. What percent of employees make less than 170 sales per month?

z	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.0
-1.0	0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587
-0.9	0.1611	0.1625	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841
-0.8	0.1867	0.1894	0.1922	0.1949	0.187	0.2005	0.2033	0.2061	0.2090	0.2119
-0.7	0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420
-0.6	0.2451	0.2493	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743
-0.5	0.2770	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3075	0.3050	0.3085

Vocabulary and Essential Questions:
What is the difference between an arithmetic sequence and a geometric sequence? arithmetic: difference between 2 terms is constant (addlsubt)
geometric: ratio between 2 terms is constant (multiplyddivide) What is the difference between a sequence and a series? \qquad series: sumof \#s Identify what the following variables stand for in the arithmetic and geometric sequence formulas.

$a_{n}=$ last $/ n^{\text {rh }}$ term	$a_{1}=\left.\right\|^{\text {st }}$ term	$n=$ \# of terms
$d=$ common	$r=$ common	$s_{n}=$ sum
difference	ratio	

Use the following formulas for questions \#5-10

$$
a_{n}=a_{1}+(n-1) d \quad a_{n}=a_{1}(r)^{n-1} \quad S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right) \quad S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{(1-r)} \quad S=\frac{a_{1}}{(1-r)}
$$

5. Write the explicit rule for the sequence $-4,0,4,8, \ldots$

$$
\begin{aligned}
& \text { Write the explicit rule for the sequence }-4,0,4,8, \ldots \\
& a_{n}=-4+(n-1) 4=-4+4 n-4=-8+4 n
\end{aligned}
$$

6. How many terms are in the following sequence? $2,9,16,23, \ldots, 107$
\qquad

$$
\begin{gathered}
107=2+(n-1) 7 \\
107=2+7 n-7 \\
107=-5+7 n \\
112=7 n=16 \\
n>16
\end{gathered}
$$

7. Find the sum of the infinite series, if it exists: $20+10+5+2.5+\cdots$

40

$$
S=\frac{20}{1-.5}=\frac{20}{1 / 2}
$$

8. Write an infinite series that will not have a sum

$$
\begin{aligned}
& \text { Write an infinite series that will not have a sum es vary } \\
& \sum_{n=1}^{\infty} 5(3 / 2)^{n-1} \quad \text { 米 } r \text { must be }>1
\end{aligned}
$$

9. The school auditorium has 4 seats in the first row, 7 seats in the second row, 10 seats in the third row, and so on. How many seats are there if the auditorium has 15 rows?

375 seats

$$
S_{15}=15\left(\frac{4+46}{2}\right)=375
$$

$$
\begin{aligned}
a_{n} & =4+(n-1) 3 \\
a_{15} & =4+(15-1) 3 \\
& =46
\end{aligned}
$$

10. Determine if the sequence $-3,12,27,42, \ldots$ is geometric or arithmetic and then find either the common difference or common ratio.

11. If your salary for the last 5 years has been $\$ 55,000, \$ 55,750, \$ 56,530, \$ 57,321$, and $\$ 58,123$ respectively, what would you expect your salary to be after 10 years or working at the same job assuming it keeps increasing by the same rate?

$$
r=1.014 \quad a_{10}=55000(1.014)^{9} \approx \$ 62331
$$

Vocabulary and Essential Questions:
Explain the difference between exponential growth and exponential decay and give an example Garmoth: increasing rate $\quad b>1 \quad f(x)=4^{x}$ decay: decreasing rate $0<6<1 \quad f(x)=0.3^{x}$
Given $f(x)=2^{x}$, write the function that is described by the following transformations.
a. Right 2 units $g(x)=2^{x-2}$
b. Left 4 units $g(x)=2^{x+4}$
c. Reflected over x-axis $g(x)=-2^{x}$
d. Up 3 units $g(x)=2^{x^{2}}+3$
e. Left 5 units and down 2 units $g(x)=2^{x+5}-2$
f. Reflected over x-axis and moved right 8 units $g(x)=-2^{x-8}$
12. Decide if the function $f(x)=(0.2)^{x}$ is exponential growth or decay. Then, describe its

13. Where would the asymptote be for the function $f(x)=\ln (x-5)$. $x=5$
14. Find the domain and range for $f(x)=4^{x}$.

15. Find the domain and range for $f(x)=\log x$
D:
 $\mathrm{R}:(-\infty, \infty)$
16. If $f(x)=2^{x}$ is translated down 4 units, what is the equation of the asymptote? $\quad y=-4$
17. If $f(x)=\log x$ is translated right 3 units, what is the equation of the asymptote? \qquad
18. The population of a city in 2007 was 23,453 . Since then, the population has increased at a rate of 1.3% each year. Write a function that describes the population as a function of the number of years, t, since 2007? Use the formula $N(t)=N_{0} e^{r t}$.

19. The number of students attending a small Illinois college increases according to the function $A=1300 e^{0.03 t}$, where t is measured in years. How many students will be enrolled in the college after 8 years? $A=1300 e^{.036)} \approx 1652$ students
20. Gina deposits $\$ 400$ in a savings account that earns 4% interest compounded quarterly. How much money is in her account at the end of 6 years?
Use the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$.
$A=400\left(1+\frac{.04}{4}\right)^{4(6)}=\$ 507.89$
21. The growth of bacteria fits the exponential function $A(t)=450 e^{0.09 t}$, where t is the number of years since 2003. Estimate the population in the year 2016.
1449.90 bactena

$$
A(t)=450 e^{.09(13)}
$$

22. Write the expanded form of the logarithmic expression $\ln \left(\frac{3 x^{4}}{y^{2}}\right)$.

23. Solve $4^{x-4}=16 \quad 4^{x-4}=4^{2}$

$$
x=6
$$

24. Solve $\log _{2} x+\log _{2} 5=8$. \qquad

$$
\begin{aligned}
\log _{5} 5 x & =8 \\
2^{8} & =5 x \\
256 & =5 x
\end{aligned}
$$

25. Solve to three decimal places $4 \cdot\left(\frac{1}{2}\right)^{2 x}=64$.

$$
\begin{aligned}
x & =-2 \\
4 \cdot\left(\frac{1}{2}\right)^{2 x} & =64 \\
\left(\frac{1}{2}\right)^{2 x} & =16
\end{aligned}
$$

26. Use the properties of logarithms to rewrite the expression $\log _{4} \mathbf{1 1}-\log _{4} x$ as a single logarithm. $\log _{4}\left(\frac{11}{x^{2}}\right)$
