IM3-Semester 2 Exam Review

Name			

Vocabulary and Essential Questions:	date dich inition that
How would you describe a NORMAL DISTRIBUTION?	auta onstructions that
S Draw a picture of NORMAL DISTRIBUTION and label t	symmetric about the mean
-25 -15 N IF 25 How would you describe STANDARD DEVIATION? ht	ow spread out dota 15

Problems:

- 1. What percent of the data in a normal distribution is above the mean?
- 2. What percent of the data in a normal distribution is within 1 standard deviation above and below the mean?

The number of sales company employees make in a month can be represented as a normal distribution with a mean of 200 sales per month and a standard deviation of 20 sales per month. What percent of employees make less than 170 sales per month?

* Go to 2 5 core table on Haikin

z	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.0
-1.0	0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0 1539	0.1562	0.1587
-0.9	0.1611	0.1035	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841
-0.8	0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119
-0.7	0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420
-0.6	0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743
-0.5	0.2770	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085

Vocabulary and Essential Questions:
What is the difference between an arithmetic sequence and a geometric
sequence? arithmetic: difference between 2 terms is constant (addisuor)
geometric: ratio between 2 terms is constant (multiply/divide)
What is the difference between a sequence and a series? <u>Sequence: [15+ of #5</u>
series: sumof #s
Identify what the following variables stand for in the arithmetic and geometric sequence
formulas.
$a_n = ast/n^{m} erm$ $a_1 = st erm $ $n = # of terms$
$d = common$ $r = common$ $S_n = Sum$
difference include
cinterence restric
Use the following formulas for questions #5-10
$a_n = a_1 + (n-1)d$ $a_n = a_1(r)^{n-1}$ $S_n = n\left(\frac{a_1+a_n}{2}\right)$ $S_n = \frac{a_1(1-r^n)}{(1-r)}$ $S = \frac{a_1}{(1-r)}$
5. Write the explicit rule for the sequence $-4, 0, 4, 8,$ $a_n = -4 + (n-1)4 = -4 + 4n - 4 = -8 + 4n$

- 6. How many terms are in the following sequence? 2, 9, 16, 23, ..., 107 107 = 2 + (n-1)7
- 7. Find the sum of the infinite series, if it exists: $20 + 10 + 5 + 2.5 + \cdots$
- 8. Write an infinite series that will not have a sum $25(3/2)^{n-1} + rmus+be > 1$

375 seats

S15= 15 (4+41)

= 375

9. The school auditorium has 4 seats in the first row, 7 seats in the second row, 10 seats in the third row, and so on. How many seats are there if the auditorium has 15 rows?

 $a_n = 4 + (n-1)3$ $a_{15} = 4 + (15-1)3$ = 46

 $S = \frac{20}{1-.5} = \frac{20}{1/2}$

107 = -5+7h

n.216

- +15 +15 +15
- 10. Determine if the sequence -3, 12, 27, 42, ... is geometric or arithmetic and then find either the common difference or common ratio.

arthmetic d=15

 If your salary for the last 5 years has been \$55,000, \$55,750, \$56,530, \$57,321, and \$58, 123 respectively, what would you expect your salary to be after 10 years or working at the same job assuming it keeps increasing by the same rate?

 $a_{10} = 55000 (1.014)^{9} \approx \frac{1}{2} [27.33]$ r=1.014

12. Decide if the function $f(x) = (0.2)^x$ is exponential growth or decay. Then, describe its end behavior using limits.

14. Find the domain and range for $f(x) = 4^x$. D: $(-\infty) = R$: $(0, \infty)$

- 15. Find the domain and range for $f(x) = \log x$ D: (0, 0) R: (-0, 0)
- 16. If $f(x) = 2^x$ is translated down 4 units, what is the equation of the asymptote?
- 17. If $f(x) = \log x$ is translated right 3 units, what is the equation of the asymptote? $\chi = 3$
- 18. The population of a city in 2007 was 23,453. Since then, the population has increased at a rate of 1.3% each year. Write a function that describes the population as a function of the number of years, *t*, since 2007? Use the formula $N(t) = N_0 e^{rt}$. $N(t) = 25453 e^{-013t}$
- 19. The number of students attending a small Illinois college increases according to the function $A = 1300e^{0.03t}$, where t is measured in years. How many students will be enrolled in the college after 8 years? $A > 1300e^{-03(8)} \approx 1652$. Students
- 20. Gina deposits \$400 in a savings account that earns 4% interest compounded quarterly. How much money is in her account at the end of 6 years?

Use the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$.

 $A = 40q(1 + \frac{.04}{...)}^{4(...)} = 507.89

21. The growth of bacteria fits the exponential function $A(t) = 450e^{0.09t}$, where t is the number of years since 2003. Estimate the population in the year 2016.

49.90 bactena

A(t) = 4500.09(13)

22. Write the expanded form of the logarithmic expression $\ln\left(\frac{3x^4}{y^2}\right)$.

23. Solve
$$4^{x-4} = 16$$
 $4^{x-4} = 4^{-4}$

. 1

24. Solve
$$\log_2 x + \log_2 5 = 8$$
. $x = 51.2$
 $\log_2 5x = 8$
 $2^8 = 5x$
 $256 = 5x$
25. Solve to three decimal places $4 \cdot (\frac{1}{2})^{2x} = 64$.
 $x = -2$
 $4 \cdot (\frac{1}{2})^{2x} = 16$
 $(2^{-1})^{2x} = 2^{+1}$
 $(\frac{1}{2})^{2x} = 16$
 $2x = 4$
 $x = -2$
26. Use the properties of logarithms to rewrite the expression $\log_4 11 - 2\log_4 x$ as a single logarithm. $\log_4 (\frac{11}{x^2})$