Integrated Math 3
Semester 1 Exam Review

Name: \qquad
Period: \qquad

Chapter 4: Quadratics

1. Write the function in intercept form for the graph below. $[-2,8]$ by $[-5,3]$
Vertex
form

$$
(3,-4)
$$

$$
\begin{aligned}
& y=a(x-k)^{2}+k \\
& y=a(x-3)^{2}-4 \\
& 0=a(1-3)^{2}-4 \\
& 0=a(-2)^{2}-4 \\
& 0=4 a-4 \\
& 4=4 a \\
& 1=a
\end{aligned} \quad \text { Into } \quad, \quad 1(x-3)^{2}-4
$$

$$
\text { Intercept form: } y=a\left(x-r_{1}\right)\left(x-r_{2}\right)
$$

$$
y=a(x-1)(x-5)
$$

$$
y=a(x-1)(x-5)
$$

$$
-4=a(3-1)(3-5)
$$

$$
-4=a(2)(-2)
$$

$$
\begin{aligned}
& 1=a \\
& f(x)=3 x^{2}-6 x+5 ?
\end{aligned}
$$

2. What is the vertex of the function $f(x)=3 x^{2}-6 x+5$?

$$
\begin{aligned}
& \text { What is the vertex of the function } f(x)=3 x^{2}-6 x+5 \text { ? } \\
& \text { vertex }=\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right) \\
& =
\end{aligned} \begin{aligned}
& \text { (} \\
& \hline f(1)=3(1)^{2}-6(1)+5 \\
&=3-6+5 \\
&=2
\end{aligned}
$$

3. What are the number and type of zeros for the function $v(x)=-3(x-5)^{2}+2$?
Since the vertus is in
Q1 and opens down there will be 2 Real Zeros.
4. Simplify the expression.
Double Distribute
Collect Che Terns
$15-10 i+18 i-12 i^{2}$
Evaluate $i^{2}=-1$
Multiply $\frac{1}{3}$ Collect lek

5. Using a system of equations or a quadratic regression, write an equation in standard form with the points: $(0,4),(1,-2),(2,-4)$
Using Hrapher:

- Go to STAT edit, enter in 3 ordered pairs.
- Go to STAJ cal, \#5 Quad Reg, enter to find $a, b, c^{\prime} s$.
- $y=a x^{2}+b x+c, a=2, b=-8, c=4$

$$
y=2 x^{2}-8 x+4
$$

a 3×3 system of Equation: $=2=2^{x^{44}}$
$y=a x^{2}+b x+c \quad b^{x^{4}}$

1. Plugin for (x, y)
$-4=4 a+2 b+c$
to get each of the
$-2=a+b+c$

2. A football player kicks a football across the football field. The ball leaves the player's foot at a $4=2 a$ height of 3 feet. It follows a path in the shape of a parabola. At its highest point, the ball is a horizontal distance of 30 feet from the player and 45 feet above the ground. Write a function to $2=a=a$
represent the height of the ball in terms of its distance from the player.
3. The function graphed below has an absolute minimum or maximum of \qquad 2 at $x=4$
\qquad

4. Write a possible function to model the given graph in vertex form.

Chapter 5: Polynomial Functions

1. Determine the product, $h(x)$, of the given linear and quadratic factors.
$f(x)=5 x+3$ and $g(x)=2 x^{2}-12 x+1$
$h(x)=(5 x+3)\left(2 x^{2}-12 x+1\right)$
$h(x)=10 x^{3}-60 x^{2}+5 x+6 x^{2}-36 x+3$
$h(x)=10 x^{3}-54 x^{2}-31 x+3$
2. List the number of possible extrema for an 11th degree polynomial.

3. Reflect the function $f(x)=x^{3}$ about the x-axis and translate it 2 units to the right and 4 units up to produce $g(x)$. Write an equation that represents the function $g(x)$. w

4. Determine if the function is even, odd, or neither. $f(x)=3 x^{4}-2 x^{2}$

5. The volume $V(x)$ of a box is defined by the function $V(x)=x(15-2 x)(10-x)$, where each factor represents a dimension of the box. Using the window $[-20,20]$ by $[-100,200]$,find the extrema for the volume situation.

Relative minimum $x=8.8$
at -27.5 when
6. The equation for $f(x)$ is given. The equation for the transformed function $g(x)$ in terms of $f(x)$ is also given. Describe the transformations) performed on $f(x)$ that produced $g(x)$.
$f(x)=x^{4}, g(x)=\frac{1}{2} f(x+3)-5 \quad$ The graph is vertically compressed/shrunk by a factor of $1 / 2$. Shifted 3 units left and 5 units down.
7. Fill in the blanks. This function is eVen (even, odd, or neither) because it is symmetric to y-axis (x-axis, y-axis, origin, or NO symmetry).

8. Fill in the blanks. This function is neither (even, odd, or neither) because it is symmetric to NO Symmetry (x-axis, y-axis, origin, or NO symmetry).

9. Describe the end behavior using limits. $f(x)=5 x^{3}-2 x^{2}+6 x-4$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

10. Write a function that represents the following graph.

Chapters 6-7: Polynomial Equations

1. Analyze the functions. Determine which function has the higher degree

2. Solve the following inequality and write your answer in set-builder notation: $x^{2}+2 x>8$

$$
\begin{aligned}
& x^{2}+2 x-8 \\
& (x+4)(x-2)
\end{aligned}
$$

$$
x<-4 \text { or } x>2
$$

3. Find the average rate of change between the local maximum and the local minimum.

$$
\frac{f(b)-f(a)}{b-a}=\frac{-1-3}{1-1}=\frac{-L)}{2}
$$

Semester 1 Exam Review
4. List all the POSSIBLE rational roots for the following function: $\mathrm{g}(\mathrm{x})=\left\{\begin{array}{l} \\ \mathrm{x}^{3}-2 \mathrm{x}^{2}+7 \mathrm{x}-6 .\end{array}\right.$

$$
\frac{F_{\text {actors of constant }} \pm 1 \pm 2 \pm 3 \pm 6}{F_{\text {actors of } L C}^{ \pm 1 \pm 3} \quad \pm \frac{1}{3} \pm \frac{2}{3} \pm 1, \pm 2, \pm 3, \pm 6}
$$

5. Use the Binomial Theorem or Pascal's Triangle to expand the following binomial: $(2 x-3)^{4}$.

$$
\begin{aligned}
& 1 a^{4} \\
& 4 a^{3} b \quad 6 a^{2} b^{2} \\
& 44 b^{3} \\
& 1(2 x)^{4} \quad 4(2 x)^{3}(-3) \quad 6(2 x)^{2}(-3)^{2} \\
& \begin{array}{l}
\text { 4 } \begin{array}{ll}
4 \cdot 8 x^{3} \cdot-3 & 6.4 x^{2} \cdot 9 \\
-96 x^{3} & 216 x^{2}
\end{array} \\
\text { 6. Factor completely: } 4 x^{4}-16 x^{2} . \\
4 x^{2}\left(x^{2}-4\right)
\end{array} \\
& 4(2 x)(-3)^{3} \\
& 1(-3)^{4} \\
& 8 \times-27 \\
& \begin{array}{l}
4 \quad \begin{array}{rr}
4 \cdot 8 x^{3}-3 & 6.4 x^{2} \\
-96 x^{3} & 216 x^{2}
\end{array} \\
\text { 6. Factor completely: } 4 x^{4}-16 x^{2} \\
4 x^{2}\left(x^{2}-4\right)
\end{array} \\
& \text { 6. Factor completely: } 4 x^{4}-16 x^{2} \text {. } \\
& \begin{array}{l}
4 \quad \begin{array}{rr}
4 \cdot 8 x^{3}-3 & 6.4 x^{2} \\
-96 x^{3} & 216 x^{2}
\end{array} \\
\text { 6. Factor completely: } 4 x^{4}-16 x^{2} \\
4 x^{2}\left(x^{2}-4\right)
\end{array} \\
& 4 x^{2}(x+2)(x-2) \\
& -216 x \quad 81 \\
& 16 x^{4} \\
& 16 x^{4}-96 x^{3}+216 x^{2}-216 x+81 \\
& 1 b^{4} \\
& 4
\end{aligned}
$$

7. Factor completely $\left(x^{3}+9 x^{2}\right)(-9 x-81$.

$$
\begin{gathered}
x^{2}(x+9)-9(x+9) \\
\left(x^{2}-9\right)(x+9)
\end{gathered}
$$

$$
(x+3)(x-3)(x+9)
$$

T.

8. Given $(x-2)$ is one of the factors of $f(x)=x^{3}-5 x^{2}+2 x+8$, factor completely.

9.The following function models a situation of average velocity in regards to position over time. Use interval notation to describe all the intervals where the function is decreasing.

Chapter 9: Graphing Rational Functions

1. Given the function $\mathrm{f}(\mathrm{x})=f(x)=\frac{x+1}{x^{2}-16}$, identify the vertical and horizontal asymptotes.

Vertical Asymptotes: $x=4$ and $x=-4$
Horizontal Asymptotes: y = 0
2. A) What is a rational function?

A rational function is any function that can be written as a ratio of two polynomials.
B) Determine whether each function is a rational function or not a rational function. If the function is not rational, explain why.
c) $f(x)=\frac{x^{2}+2 x}{x+5}$
d) $q(x)=\frac{x^{3}-2 x+1}{\sqrt{x}}$

Yes, C is a rational function.

D is NOT a rational function because \sqrt{x} is not polynomial.
3. Given the function $g(x)=\frac{x^{2}-2 x-24}{x-6}$, where does the removable discontinuity occur?

The removable discontinuity is a hole at $(6,10)$.

4. State the RANGE of the function $f(x)=\frac{\overline{2 x}}{x-5} . \quad H . A \therefore y=2$ $R a n g e:(-\infty, 2) \cup(2, \infty)$
5. Solve the equation $\frac{5 x-6}{3 x+4}=\frac{2}{9}$ and list any restrictions.

$$
\begin{aligned}
2(3 x+4) & =5 x-6 \\
6 x+8 & =5 x-6 \\
x+8 & =-6 \\
x & =-14
\end{aligned}
$$

$$
x \neq-4 / 3
$$

6. Analyze the graph of the function $f(x)=\frac{4 x^{2}-25}{2 x-5}$. State the domain, range, and discontinuities. Graph the function.

$$
f(x)=\frac{(2 x-5)(2 x+5)}{2 x-5_{x=\frac{5}{2}} \cos }=2 x+5=10
$$

$$
D:(-\infty, 2.5) \cup(2.5, \infty)
$$

$$
R:(-\infty, 10) \cup(10, \infty)
$$

Hole at $(2.5,10)$

7. What is the domain of the function $h(x)=\frac{5}{3 x^{2}-5 x+2}$?

$$
(3 x+1)(x-2)
$$

$$
\begin{aligned}
& \qquad D:(-\infty,-1 / 3) \cup(-1 / 3,2) \cup(2, \infty) \text { or } A l / \text { real numbers } \\
& \text { 8. The apt } x=\frac{-1}{3} \text { and } \\
& \text { 8. The Community Wellness Center charges a monthly membership fee of } \$ 25 \text {, plus a one-time } x=2 \text {. }
\end{aligned}
$$ initiation fee of $\$ 45$ to join. Write an equation that gives the average cost y in dollars for x months

9. Identify the vertical and horizontal asymptotes for the function $f(x)=\frac{3}{x^{2}+16}$.

Vertical Asymptote: None

Horizontal Asymptote: y=0

10. Which function is represented by the graph shown?
It has vertical asymptotes at $\mathrm{x}=2$ and $\mathrm{x}=-2$, horizontal asymptote at $\mathrm{y}=-1$ and a hole in the graph at $\left(0, \frac{-5}{4}\right)$.
a. $\quad f(x)=x^{2}-4 x$
b. $\quad g(x)=x^{2}-4$
(c.) $\quad h(x)=\frac{-x^{3}+5 x}{x^{3}-4 x}-\frac{x\left(x^{2}-5\right)}{x(x+2)(x-2)}$
d. $j(x)=\frac{x^{2}-4}{x}$

Chapter 10: Rational Equations

1. What is (are) the solutions) of the equation $\frac{8}{3 x-2}=\frac{2}{x-1}$?

$$
\begin{aligned}
8(x-1) & =2(3 x-2) \quad x \neq \frac{2}{3}, 1 \\
8 x-8 & =6 x-4 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

2. Determine the restrictions) for the value of x in the expression $\frac{1}{3 x^{2}+12 x}$.

3. Simplify: $\frac{4 x}{5}+\frac{3 x}{10}-\frac{7 y}{4}$

$$
\frac{4 x(4)}{5(4)}+\frac{3 x(2)}{10(2)}-\frac{7 y(5)}{4(5)}=\frac{16 x+6 x-35 y}{20}=\frac{22 x-35 y}{20}
$$

4. Simplify: $\frac{3 x}{6 x+42} \div \frac{12 x^{3}}{2 x^{2}-98}$

5. Solve the equation $\frac{x}{2}=\frac{x^{2}-3 x}{4}$.

$$
\begin{aligned}
& 2\left(x^{2}-3 x\right)=4 x \\
& 2 x^{2}-6 x=4 x \\
& 2 x^{2}-10 x=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 x(x-5)=0 \\
& x=0 \text { or } x=5
\end{aligned}
$$

7. For which of the following would you need to determine and use the least common denominator (LCD) in order to calculate?
a. $\frac{2}{x y}+\frac{16}{x y} \rightarrow$ already s are denominator
b. $\frac{14}{x} \cdot \frac{5}{6 x}$
c. $\frac{5}{2 x} \div \frac{8}{x}$
d. $\frac{8}{9 x}+\frac{3}{x}$
8. For her birthday party Kathryn mixed together 3 gal. of Brand A fruit punch and 6 gal. of Brand B fruit punch. Brand A contains 17\% fruit juice and Brand B contains 26\% fruit juice. What percent of the mixture is fruit juice?

$$
\begin{gathered}
3(.17)+6(.26)=9 x \\
2.07=9 x \\
x=0.23
\end{gathered}
$$

9. Simplify $\frac{48 x^{5} y^{3}}{y^{4}} \cdot \frac{x^{2} y}{6 x^{3} y^{2}} \cdot \frac{y}{12 x^{2}}$

$$
\frac{48 x^{7} y^{5}}{72 x^{5} y^{6}}=\frac{2 x^{2}}{3 y}
$$

$$
5 x+10-2 x+4=26
$$

$$
\begin{aligned}
& 0-2 x+4=26 \\
& 3 x+14=26
\end{aligned}
$$

$$
3 x=12
$$

11. Solve the inequality $\frac{x-5}{x+7}>0$.
zero: 5
discontinuity: -7

Chapter 11: Inverse and Radical Functions

1. Write an equation that shifts the graph of the function $f(x)=\sqrt{x}$ to the right 2 units.

$$
K(x)=\sqrt{x-2}
$$

2. Simplify the expression $\sqrt{25 x^{6} y^{2} z^{4}}$ for all real numbers x, y, and z.

$$
5 z^{2}\left|x^{3} y\right|
$$

3. The relationship between the length of a pendulum L (in feet) and its period T (in seconds) is modeled by the equation $T=2 \pi \sqrt{\frac{L}{32}}$. To the nearest foot, find the length of a pendulum with period 40 seconds.

$$
\begin{aligned}
\frac{40}{2 \pi}=\frac{2 \pi}{\frac{L}{32}} \quad\left(6.37=\sqrt{\frac{L}{32}}\right)^{2} & =32 \cdot 40.58=\frac{L}{32} \cdot 32 \\
& =1299 \text { feet }
\end{aligned}
$$

4. Which is the graph of the inverse of the function $C(x)=x^{7} ? \sqrt[n]{x}=\sqrt[7]{y^{7}} \rightarrow \sqrt{y=\sqrt[n]{x}}$
a.

b.

c. 9 d.

5. Find the extraneous solution of the equation $-5-\sqrt{x+7}=-x$.

6. Find the solution of the equation $2 \sqrt[3]{x+1}+\beta=0$.
